Deep Learning’s Notes

Daniele Bertagnoli

2023/2024
Contents
(1 Neural Networkl
[L1T Prediction Functionl
[LTT Notafionl o o
[.L1.2 Consideration about the dimensionalities

(1.2 Cost Function’s Optimization|
(1.3 Backpropagation|
(1.4 HyperNetworks|

[2.1.1 Convolutional Layer|
[2.1.2 Pooling Layer|
2.2 More on Convolution| e e
2.3 Standard Spatial CNN|

These notes are about the NYU’s Deep Learning course, it can be found on YouTube at the
following link.

https://www.youtube.com/watch?v=0bMe_vCZo30&list=PL80I41oVxglKcAHllsU0txr3OuTTaWX2v&index=1

1 Neural Network

A Neural Network (NN) is a machine learning model that is capable to capture non-
linear relationship between x and 6, where x are the features and 6 are the parameters of
the model. These models are very powerfull since the non-linearity guarantees an higher level of
expressivity.

As for the other classical MLL models, NNs aim to model a function:

he(z) : RT — R

that outputs a certain prediction y. This function is created by the network itself with a
mechanism that we will describe in next paragraphs. Once that the function is created, the NN
tries to find the best parameters based on the cost function,typically the Least Mean
Square. The cost function is optimized using the Gradient Descent method (can be either
the classical one or its stochastic version). To perform Gradient Descent, we must be able to
compute the gradient of the cost function with respect to all the parameters, this step is called
backpropagation and will be also discussed in a dedicated section.

1.1 Prediction Function

The hy function can be expressed using the following form:
hy(z) = o(wrx +b)

where € R? is a feature of d-dimensionality and b € R is called bias. The w is the weight
vector. The o function is called activation function and it’s used to achieve non-linearity,
typically it is the ReLU function defined as follows:

ReLU(z) = max(0, x)

The NN is composed by neurons (also known as perceptrons), each of those implements a
hg function with different weights. These neurons are organized in layers such that, each
neuron of the layer i is connected with all the neurons in the layer ¢ + 1. Therefore, the
output of a neuron’s function is the input of the next layer.

Hidden Layers

Input Layer

Output Layer

/?\\\’/ DN
R ;... \

N4

X7

%.
CTUNAR

LR
4\““(44"&6‘2:

™ 4 18 “s 2 :
é/,ffif‘o'i&%\%"'/fi’\
LN
\-ﬁ?/‘\\\\

t'.\
\

1.1.1 Notation

To be more compact we will introduce the following notation to express all the functions in the
NN.

. ag : The i-th neuron in the j-th layer.
e 1;: i-th feature in the d-dimensional feature vector x.

w{: The weight vector of the ag neuron. The size of the weight vector is the same as the
number of features in input (e.g. for the firs hidden layer is d).

e b/: The bias vector of the a neuron.
. zf = wf Ty + bf
According with this notation, each neuron’s function can be expressed as:
al(x) = ReLU(%) = ReLU (w! "z + b))
when j = 1 then x coincides with the features vector, otherwise z is represented by a’~!'. For

convenience, we will express most of the times not the single neuron’s function, but the entire
layer functions as follows:

a’(x) = ReLU(2) = ReLU(WJ T + 1Y)

Wi =

the R™*¢ matrix representing the weights of all the m neurons in the j-th layer.

1.1.2 Consideration about the dimensionalities

Let’s briefly discuss the dimensionality of all the new parameters we have introduced in the previus
part.

e 2/ € R™ with m = # neurons in the j-th layer.
e 17 € RF with k = # neurons in the (j — 1)-th layer.
e IV € R™ with m = # neurons in the j-th layer.

W € R™* with m number of the neurons in the j-th layer and & the number of neurons in
the (j — 1)-th layer.

1.2 Cost Function’s Optimization

As mentioned in the introduction of the Neural Networks, after that the final function is calculated
by the model, we still have to assign real values to the parameters to get a prediction. The cost
function that we will discuss is the LMS defined as follows:

J(0) = (y" — he(x"))?, considering the i-th example.

The optimization step consists into find the best #s that minimizes the cost function, this can be
done using the Gradient Descent:

0:0—aVyJ(0)

The Stochastic Gradient Descent algorithm works as follows:

Algorithm 1 Stochastic Gradient Descent

1: Hyperparameter: learning rate o, number of total iteration 1.
2: Initialize @ randomly.

3: for i = 1 to njer do

4 Sample j uniformly from {1,...,n}, and update 0 by

0 := 0 — aV,yJY(9)

We can also use the Mini-batch Stochastic Gradient Descent, this allows to compute multiple
bathes in parallel (hence useful for the GPUs):

Algorithm 2 Mini-batch Stochastic Gradient Descent

1: Hyperparameters: learning rate a, batch size B, # iterations nier.

2: Initialize ¢ randomly

3: for i = 1 to nje do

4 Sample B examples ji, ..., ip (without replacement) uniformly from
{1,...,n}, and update 6 by

B
6:=60— 23" V,J09(9)
= Stanford

1.3 Backpropagation

In both the algorithms presented in the optimization step, we need to compute the gradient of the
cost function. This involves in computing the derivative of J with respect of 6s. The parameters
which the J depends on are all the weight matrixes and the bias vectors in the network. Therefore,
to solve the gradient of the

1.4 HyperNetworks

In the standard NN architecture, the weights are determined by the network itself during the
backpropagation step. However, we can also add more complexity to the structure by using as
weight vectors the output of another network or function. In the HyperNetworks, the weights
of a network H are dynamically configured by another network G.

y —{C(yy)
A

G(x,w)

Another way of thinking these models is to create multiple models that shares the same weights,
therefore during the backpropagation step, each of these model will contribute to the weights. This
kind of structure is used for example to detect motifs in images, soundwaves, etc...

Gx.w)l G(x.w)

ANRAAARRTRRRA)

2 Convolutional Neural Network

A Convolutional Neural Network (CNN) is a neural network composed of multiple
layers that is based upon the convolution operator concept. The idea behind these
networks is to have a kernel (can be seen as a sliding window) which applies a set of filters to
obtain higher-level features. These new features are used in the next layers to perform tasks
such as pattern recognition, image classification, etc...

2.1 CNN Architecture
The layers composing the a CNN are the following:

1. Input Layer: The input to a CNN is typically an image or a multidimensional array repre-
senting the data.

2. Convolutional Layer: The convolutional layer is the core building block of a CNN. It
consists of a set of filters (also called kernels) that slide across the input image. This pro-
cess produces a feature map that highlights certain patterns or features in the input data.
The filters are learned during the training process to detect various features such as edges,
textures, or shapes.

3. Pooling Layer: The pooling layer reduces the spatial dimensions (width and height) of the
feature maps while retaining important information.

4. Dense Layer (Fully-Connected Layer): In the final layers of the CNN, the feature maps are
flattened into a one-dimensional vector and connected to a fully connected layer. This layer
performs classification tasks by learning weights associated with each feature and combining
them to produce an output vector.

5. Output Layer: The output layer represents the final prediction or classification of the input
data.

The convolutional layers and pooling layers can be repeated more than once.

2.1.1 Convolutional Layer

This layer is responsible for applying filters to the input data. The filter is applied across the input
data using the convolution operation, where the filter’s weights are multiplied with the input values
at each position, and the results are summed up to produce an output feature map. The general
form of a 1-dimensional convolutional operation is given by:

yi = > (wj - Tij)
e y;: Output feature at position ¢
e z;_;: Input features within the kernel

o w;: Weights of the filter

The output features produced by the convolutional layer can be seen as higher-level
features compared to the raw input data. These features capture patterns and structures
in the data and are used by subsequent layers (such as pooling and fully connected layers) for tasks
like pattern recognition and classification.

The kernel is typically shifted by one pixel at time, however this behaviour can be changed
by modifying the stride which indicates how much the kernel must be shifted between the two
iterations. For each convolutional layer we have to specify both the number of filters
that we want to apply during the convolutional step of and their size. Another important
parameter that must be set is the padding used to preserve the spatial dimensions of the input
volume when applying convolution operations. It involves adding extra border pixels (or values)
around the input data before applying the convolution operation. Typically the padding is a
zero-padding, hence the values are filled with zeros.

Each feature then is typically passed through a non-linear activation function such
as ReLU.

2.1.2 Pooling Layer

This layer aims to reduce the feature maps’ dimensions trying to keep only the relevant and useful
features. There many pooling operations that can be performed over the features:

e Max Pooling: Keeps the maximum value in a window.
e Average Pooling: Calculates the average on all the values in a window.
e L-p Norm: Applies the L-p Norm over the window.
These operations helps also to lower in some cases the overfitting and the computational complexity

of the task.

2.2 More on Convolution

The convolution step in the convolutional layer can be also seen as a sequence of linear operations.
A filter, indeed is a matrix that is applied to the input to produce an output:

2= Ax
e z: is the output vector s.t. z € R™
e 1: is the input vector s.t. z € R"

e A: is the convolution matrix s.t. z € R™*™

2.3 Standard Spatial CNN

A Standard Spatial CNN is a modified CNIN designed to model and exploit spatial
information and relationships within the input data. For specific types of data, we can take
advantage of the local features to speed up and improve the results of a CNN. In practice, this can
involve removing some connections in the neurons of the convolutional layers to save computations.
Therefore, the neurons will not have ”global access” to all the input directly, but as they
climb the hierarchy of the layers, the final neurons will still have the same amount of
information.

global view

The final architecture can still see the whole input while each single neuron sees a some part of
the input.

This is called sparsity and can be done if and only if the data that we are using shows locality,
hence close input data are likely to be realted to each other.

Another important aspect of the SSCNN is the parameters sharing, instead of having a
number of weights for each linked neuron, a single neuron has a single weight. This technique can
be applied if the data are stationary, hence the same pattern is repeated multiple times within
the dataset. This lead to a faster convergence, better generalization and kernel independece (hence
they can be parallelized) and also reduces the number of computations per step.

10

	Neural Network
	Prediction Function
	Notation
	Consideration about the dimensionalities

	Cost Function's Optimization
	Backpropagation
	HyperNetworks

	Convolutional Neural Network
	CNN Architecture
	Convolutional Layer
	Pooling Layer

	More on Convolution
	Standard Spatial CNN

