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"No. Try not. Do... or do not. There is no try."

∼ Master Yoda
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Abstract

The project discussed in the thesis pertains to a mixed-reality system designed to
assist industrial operators in recognizing objects and providing guidance during
assembly in the production chain. This task can be divided into two main steps: the
development of a deep learning computer vision model and the development of the
mixed-reality system. The deep learning model has been created taking inspiration
from state-of-the-art research, while also considering the necessary constraints
imposed by the final application context, such as high accuracy and robustness to
occlusion. The mixed-reality step involves creating a junction between the deep
learning model and the visor through the visor engine. This last step is fundamental
to provide operators with a ready-to-go system.
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Chapter 1

Introduction

In the fast-paced, technologically driven landscape of the industrial sector, the
pursuit of efficiency and precision is critical to the success of proposed services. This
thesis represents a collaborative effort between Sapienza University of Rome and
Thales Alenia Space, a globally recognized leader in satellite systems and services.
Thales Alenia Space, with its extensive expertise in the design, manufacturing, and
delivery of satellite systems for applications such as telecommunications, navigation,
Earth observation, and space exploration, provides invaluable industry insight and
real-world challenges to this research endeavor.

The genesis of this project stemmed from the pressing need within industrial
settings to enhance productivity. Currently, satellite operators are required to
manually build and assemble parts, a process that is prone to errors. At each step,
a quality inspector is introduced to identify and rectify potential mistakes. However,
during satellite assembly, these interruptions for quality checks can significantly
extend the time required to complete the entire operation. The primary goal of this
project is to develop a tool that assists operators during satellite assembly, thereby
reducing errors and improving productivity, while maintaining the same level of build
quality. With the implementation of this system, the role of the quality inspector
becomes redundant, as the system also supports the quality-check processes.

At the core of our project lies the primary objective of developing a deep learning
framework capable of classifying objects and accurately estimating their position
relative to the camera using only a single RGB image. While the field of 6D pose
estimation has achieved remarkable advancements since 2017, with a plethora of
research publications proposing novel methodologies and enhancements, the majority
of state-of-the-art approaches rely on RGB-D data, leveraging depth information.
Here lies one of the key challenges we were confronted with: implementing a
methodology that exclusively utilizes RGB features for pose regression, thereby
circumventing the reliance on depth data. In particular, one of the central tasks of this
project, is the detection and localization of objects in three-dimensional (3D) space
relying only on RGB images. While humans perform this task effortlessly through
experience and spatial cognition, for machines, it presents a formidable challenge.
Addressing this challenge requires the application of deep learning techniques to
accurately infer both an object’s class and position. These parameters are essential
for the quality inspection process. If the system can successfully regress both the
object’s position and class, it will enable the development of a procedural algorithm
based on the trained AI model. This algorithm would guide the operator through
the assembly process while performing the quality inspection steps, ensuring that
the final product adheres to both the building and flight constraints defined during
the design phase.
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Furthermore, our ambitions extend beyond the development of a robust 6D pose
estimation model. The model’s final predictions are not useful if not directly available
to the operator. Therefore, the idea was to equip the operators with a mixed-reality
visor, such that the needed information can be plotted into the visor display. This
futuristic approach enables operators to access information in an easier and faster
way, thus revolutionizing their interaction with industrial environments. However,
the computational demands imposed by deep learning models present a substantial
challenge for standalone deployment. As a result, our model carefully balances the
need for high accuracy with the requirement for optimized performance, particularly
in terms of inference time (a critical consideration for real-world applications).



3

Chapter 2

State of the Art

2.1 Object Detection
When we talk about "object detection" in computer vision, we are typically

referring to tasks where the goal is to identify whether an object from a given set of
categories is present in an image (or video) frame. For a computer, this task can
be much more challenging than it appears to a human. We are able to recognize
objects intuitively, without needing to consciously think about it. This process
involves several automatic steps, including image acquisition through the eyes, image
processing using various brain areas, and, ultimately, applying our experience to
understand what we are seeing. For an algorithm, all these steps represent numerous
implicit challenges, such as understanding how to recognize an object, creating the
bounding boxes1, or even deducing context to make more reliable predictions.

2.1.1 Object Detection using Deep Learning Models
Deep learning, a subset of machine learning, is a branch of artificial intelligence

that focuses on the development and training of neural networks with multiple
layers to learn representations of data. These neural networks, inspired by the
structure and function of the human brain, are capable of automatically learning
hierarchical patterns and features from raw input data, such as images, audio, text,
and sequences.

Deep learning models, often referred to as deep neural networks, consist of
interconnected layers of neurons, each performing specific transformations on the
input data. The depth of these networks, referring to the number of layers, enables
them to learn complex and abstract representations of data. This leads to state-of-
the-art performance in various tasks such as image recognition, natural language
processing, speech recognition, and more.

The learning process in deep learning involves training the neural network on
a large dataset, adjusting the parameters of the network through optimization
algorithms such as gradient descent, and iteratively refining the model’s predictions
to minimize the difference between predicted and actual outputs.

Deep learning has completely revolutionized the object detection task, achieving
performance levels never previously reached and setting a new starting point for the
state-of-the-art.

1In computer vision, a bounding box is the area in the image that contains the object. Typically,
these boxes are represented using four corners of the box, or two opposite corners, with the other
two corners implicitly deduced.
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Figure 2.1. CNNs consist of convolutional layers, which apply learnable filters to input
data, detecting features like edges or textures. Pooling layers then down-sample the
feature maps produced by convolution, retaining essential information. Fully connected
layers follow, connecting neurons across layers for classification or regression.

In general, we can organize each object detection deep learning model into
two main categories: two-stage detectors (Section 2.1.2) and one-stage detectors
(Section 2.1.3) [1] [2]. Convolutional Neural Networks [3] (CNNs Figure 2.1) are
considered the core of both detector categories. CNNs automatically learn features
from input data using convolutional layers, which apply filters to capture patterns.
Pooling layers down-sample feature maps, and fully connected layers integrate
features for classification or regression tasks. CNNs excel in recognizing patterns in
images, making them ideal for object detection.

2.1.2 Two-Stage Detectors and Milestones
The two-stage architecture [4], known for its higher accuracy, is relatively more

complex compared to one-stage algorithms. In the first stage, often referred to as the
proposal stage, preliminary tests are performed on the input image using a region
proposal network (RPN). The RPN generates candidate bounding boxes, also known
as regions of interest (RoIs), where objects might be present. These candidate RoIs
are identified based on their likelihood of containing objects of interest.

In the second stage, commonly known as the refinement stage, the algorithm
performs regional classification and location refinement on the RoIs generated in the
previous stage. Each RoI is processed independently to classify the object category
it contains and refine the bounding box coordinates for accurate localization. This
refinement typically involves fine-tuning the coordinates of the bounding box to
better align with the object’s precise location within the RoI.

Some commonly used architectures in the two-stage detection framework include
Faster R-CNN, R-FCN, and FPN. These architectures are usually applied in scenarios
where high accuracy is crucial, such as in medical imaging or autonomous driving
applications.

Fast R-CNN Proposed in 2015 by Girshick et al. [5], Fast R-CNN is an advance-
ment in object detection, built on the R-CNN framework. Unlike earlier models that



2.1 Object Detection 5

Figure 2.2. Faster R-CNN Architecture.

relied on external algorithms, like selective search for region proposal generation,
Fast R-CNN was the first to incorporate an internal Region Proposal Network (RPN).
This network efficiently proposes regions likely to contain objects, eliminating the
need for computationally expensive external methods. Once the region proposals
are obtained, Fast R-CNN utilizes a single-stage CNN to extract feature maps from
the entire image, capturing rich information about the image as a whole. To ensure
each region proposal is mapped to a fixed-length feature vector, regardless of its size
or aspect ratio, Fast R-CNN introduces the Region of Interest (RoI) pooling layer.
This layer extracts fixed-size feature maps from the convolutional feature maps for
each region proposal. After RoI pooling, the fixed-size feature vectors are passed
through fully connected layers for both classification (predicting object classes) and
bounding box regression (refining object localization). These layers together make
the final predictions regarding the presence of objects within each region and their
respective bounding box coordinates.

Faster R-CNN Proposed by Ren et al. the same year as Fast R-CNN, Faster R-
CNN [6] builds on the innovations introduced by its predecessor. It further improves
object detection efficiency by integrating the Region Proposal Network (RPN)
directly into the detection framework. This unified architecture allows for end-to-end
training and inference, enabling Faster R-CNN to generate region proposals and
perform object detection in a single forward pass. By sharing convolutional features
between the RPN and the detection network, Faster R-CNN achieves significant
computational savings, making it faster than Fast R-CNN. Additionally, Faster
R-CNN introduces anchor boxes—predefined boxes of various scales and aspect
ratios used by the RPN to efficiently propose regions. This technique improves
localization accuracy and enhances overall object detection performance (Figure 2.2).

Feature Pyramid Networks (FPN) Published in 2017 by Lin [7], Feature
Pyramid Networks (FPN) address the challenge of detecting objects at multiple scales
within an image. FPN constructs a top-down architecture with lateral connections,
enabling it to generate a pyramid of feature maps with semantic information at
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Figure 2.3. FPN Architecture.

different resolutions. This design allows FPN to capture and utilize information
at various scales, facilitating robust object detection across different object sizes.
By incorporating FPN into detection frameworks, such as Faster R-CNN, detectors
can effectively detect both small and large objects, leading to improved detection
performance (Figure 2.3).

Mask R-CNN Introduced in 2017 by He et al.[8], Mask R-CNN is an extension
of Faster R-CNN that adds a branch for predicting segmentation masks on each
Region of Interest (RoI), in parallel with the existing branch for bounding box
recognition. This architecture enables the model to perform both object detection
and instance segmentation simultaneously, which is useful for tasks that require
precise localization of objects within an image. The additional mask output is
distinct from bounding box detection because it provides a per-pixel segmentation of
the object, which is more detailed than just the rectangular box. In the first stage,
Mask R-CNN scans the image and generates proposals about the regions where
there might be an object based on the feature maps created by a backbone network
like ResNet [9]. The second stage, the RoI Align, extracts these proposals and
performs precise object classification, bounding box regression, and mask prediction.
This method allows for highly accurate object detection and segmentation, even
in challenging scenarios where objects are closely clustered or when precise object
boundaries are required.

2.1.3 One-Stage Detectors and Milestones
One-stage detectors [10], characterized by their simplicity and efficiency, perform

object detection in a single step without explicit proposal generation. Instead of
separating the detection into multiple stages, one-stage detectors directly predict
bounding boxes and class probabilities for objects across the entire image.

In these algorithms, the network typically divides the input image into a grid
of cells and predicts bounding boxes and class probabilities for objects within each
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cell. This approach enables one-stage detectors to achieve real-time performance
and simplicity compared to their two-stage counterparts.

Examples of widely used one-stage detectors include YOLO, SSD, RetinaNet and
DETR. These models are known for their speed and efficiency, making them suitable
for applications requiring fast inference, such as video surveillance, autonomous
drones, and real-time object tracking.

YOLO-Family YOLO (You Only Look Once) [11] is a pioneering series of object
detection models known for their simplicity and real-time performance. YOLO
approaches object detection as a single regression problem, directly predicting
bounding boxes and class probabilities for objects in images.

YOLO v1 Introduced by Redmon et al. in 2016 [12], YOLO v1 divides the
input image into a grid and predicts bounding boxes and class probabilities for each
grid cell. It utilizes a single convolutional network to make predictions across the
entire image, achieving real-time performance (Figure 2.4a).

YOLO v2 Released in 2017, YOLO v2 improves upon its predecessor by
incorporating various enhancements, including batch normalization, high-resolution
classifiers, anchor boxes for improved localization, and multiscale training. These
improvements lead to better accuracy and stability.

YOLO v3 YOLO v3, unveiled in 2018, introduces further improvements such as
feature pyramid networks (FPN), enabling the model to detect objects at different
scales. It also adopts a variant of Darknet, the network architecture used in YOLO,
with additional convolutional layers and skip connections for better feature extraction.

YOLO v4 YOLO v4, released in 2020, brings significant advancements in
accuracy and speed. It introduces novel techniques such as CSPDarknet53 as the
backbone, path aggregation networks (PAN), and spatial pyramid pooling (SPP) for
better feature representation and context aggregation. YOLO v4 achieves state-of-
the-art performance while maintaining real-time inference speeds.

YOLO v5 YOLO v5, introduced in 2020, is developed by Ultralytics. It is not
an official release by the original YOLO authors but has gained popularity for its
simplicity and effectiveness. YOLO v5 adopts a lightweight architecture based on
the CSPNet and focuses on simplicity, speed, and ease of use. Despite its smaller
model size, YOLO v5 achieves competitive accuracy compared to previous versions.

YOLO v6 Introduced in 2022, YOLOv6 represents a refinement of the YOLO
trunk and neck. This version introduces the EfficientRep Backbone and Rep-PAN
Neck, tailored for enhanced efficiency. Unlike previous iterations like YOLOv5, where
the classification and box-regression heads leverage the same features, YOLOv6
adopts a distinct approach. Here, additional layers are introduced to segregate these
features from the final head, resulting in improved performance.

YOLO v7 Released in 2022, YOLOv7 does not really implement new features
or strategies.

YOLO v8 YOLO v8 was published in early 2023, it proposes a new backbone
network, anchor-free detection head, and loss function. This has lead to a performance
boost not only for the higher-level GPUs but also for the lower-end devices such as
CPU and older GPUs (Figure 2.4b).

Single Shot Multi-Box Detector (SSD) SSD [13] was proposed by W. Liu et
al. in 2015. The main contribution of SSD is the introduction of multi-reference (pre-
defined bounding boxes) and multi-resolution (down-sampling of the feature maps
over the different layers, a typical approach adopted in CNNs) detection techniques,
which significantly improve the detection accuracy of a one-stage detector, especially
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(a) YOLOv1 Architecture.

(b) YOLOv8 Architecture.

Figure 2.4. As we can see from the two schemes above, the YOLO architectures changed a
lot during these years.

for small objects. A key difference between SSD and previous detectors is that SSD
detects objects of different scales using reference boxes on different layers of the
network, whereas previous detectors typically only run detection on their top layers

RetinaNet Proposed in 2017 by Lin et al., RetinaNet addresses the challenge of
class imbalance in object detection by introducing a novel focal loss function. This
loss function dynamically adjusts the weight assigned to each training example based
on its classification difficulty, focusing more on hard examples while reducing the
influence of easy ones. RetinaNet utilizes a feature pyramid network (FPN) backbone
to extract multiscale features and employs a single-stage detection framework. By
combining feature maps from different pyramid levels, RetinaNet achieves robustness
to objects of varying sizes.

DETR Presented in 2020 by Carion et al. [14], DETR (DEtection TRansformers)
represents a significant departure from traditional object detection methods. Instead
of relying on anchor boxes or region proposal networks, DETR employs a transformer
architecture (Figure 2.11), originally developed for natural language processing tasks,
for end-to-end object detection. This approach treats object detection as a set
prediction problem, where the model simultaneously predicts the set of object
bounding boxes and their corresponding class labels. By directly optimizing a
bipartite matching loss between predicted and ground truth boxes, DETR eliminates
the need for heuristic-based methods for box prediction. This results in a simple
yet effective approach that achieves competitive performance on standard object
detection benchmarks (Figure 2.5).
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Figure 2.5. DETR Architecture.

2.2 Object Pose Estimation
Object pose estimation [15] can be considered the next-level task after object

detection. While classical object detection focuses on locating objects within a frame,
estimating the pose of an object involves representing its translation and rotation
in real-world coordinates with respect to a fixed origin, typically the camera. To
perform accurate pose estimation, the process relies on precise object detection.
With knowledge of the object and its Region of Interest (RoI), pose prediction models
can concentrate their efforts on accurately predicting the six degrees of freedom
(6DoF)2 of the object. This field is currently one of the most studied in computer
vision, especially for industrial fields.

2.2.1 Techniques and Challenges
Object pose estimation techniques are generally classified into two major cat-

egories: model-based (Section 2.2.3) and model-free (Section 2.2.4) approaches.
Model-based methods require a prior knowledge of the object’s 3D model. They
often utilize matching techniques that compare observed features from the input
image against a database containing the 3D model’s features, employing algorithms
like Iterative Closest Point (ICP) for refinement. On the other hand, model-free
approaches infer pose directly from image data using machine learning models,
particularly deep learning techniques which do not necessarily require a predefined
model of the object.

2The "6DoF" of an object, often referred to as the six degrees of freedom, describe its potential
movements or transformations in three-dimensional space. These degrees encompass translation
along the x, y, and z axes, representing horizontal, vertical, and depth movements respectively.
Additionally, rotation around each of these axes allows for pitch, roll, and yaw motions. This
concept is fundamental in fields such as robotics, computer vision, and virtual reality.
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2.2.2 Applications
Pose estimation is fundamental in numerous applications, including robotic

manipulation, autonomous driving [16], augmented reality and gaming [17], and
human-computer interaction. For instance, in robotic manipulation, accurate pose
estimation allows robots to interact with objects in their environment more effectively.
In the domain of autonomous vehicles, the estimation of the pose of nearby vehicles
and pedestrians is crucial for safe navigation and interaction.

2.2.3 Model-Based Algorithms and Milestones
Model-based pose estimation methods rely heavily on pre-existing knowledge of

the 3D models of the objects being identified. These approaches match the observed
data from the sensors or images with the 3D model stored in a database.

Iterative Closest Point (ICP) The Iterative Closest Point (ICP) algorithm
revises the estimated pose iteratively to minimize the distance between the 3D points
of the model and the data collected from the real world. It is recognized for its
simplicity and robustness, achieving high accuracy when the initial approximation of
the object’s pose is known. However, its performance declines in the presence of noise
and outliers, and its computational demands can preclude real-time applications. A
notable milestone for ICP was its application in the Mars Rover missions, aiding in
3D mapping and navigation.

Feature-Based Matching This method utilizes distinctive features from the
object’s 3D model, such as edges and corners, matching these with observed features
in the image. It is particularly robust to partial occlusions and varying lighting
conditions, making it preferable over direct image matching. These algorithms
depend on the quality and selection of features; poor-quality features can lead to
inaccuracy. Enhancements in feature extraction techniques, like SIFT3 [18] and
ORB4 [19], have bolstered its use in complex scenes.

Template-Based Methods In template-based methods, observed object views are
compared against a set of pre-rendered templates of the 3D model from various angles.
These methods excel in environments where the object’s appearance variations are
minimal and well-modeled beforehand. However, they lack flexibility to handle new
objects not in the template set and require extensive computational resources due to
numerous comparisons. They have seen practical applications in industrial quality
control, where objects adhere to strict standards.

PnP (Perspective-n-Point) PnP algorithms determine the pose of an object by
establishing spatial positions relative to a set of 3D points and their corresponding
2D projections in the image. This approach is efficient with a limited number of

3SIFT (Scale-Invariant Feature Transform): SIFT is a feature detection algorithm used in
computer vision to detect and describe local features in images. It identifies keypoints that are
invariant to scale, rotation, and illumination changes, making it robust for various applications such
as object recognition and image stitching.

4ORB (Oriented FAST and Rotated BRIEF): ORB is a feature detection and description
algorithm designed for real-time applications. It combines the FAST keypoint detector with the
BRIEF descriptor and introduces rotation invariance by computing orientations for keypoints.
ORB is efficient, robust to noise, and suitable for tasks like object tracking and localization on
resource-constrained devices.
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Figure 2.6. PnP point alignment logic.

correspondences, but its accuracy is contingent upon correct matches between 3D and
2D points, which is challenging in cluttered scenes. Recent advances in solving PnP
problems have propelled significant enhancements in real-time augmented reality
applications, where quick pose estimation is crucial (Figure 2.6).

2.2.4 Model-Free Algorithms and Milestones
Model-free pose estimation approaches do not rely on prior knowledge of the

3D models of objects. Instead, these methods infer pose directly from image data,
typically using advanced machine learning models. This category of approaches is
particularly adaptable to diverse and novel object types.

Deep Learning Based Methods Leveraging the power of deep neural networks,
especially convolutional neural networks (CNNs), this approach has revolutionized
the field of pose estimation. Deep learning methods automatically extract and learn
the most relevant features for pose estimation from vast amounts of data. While
highly effective in handling complex and varied data inputs, these methods require
substantial computational resources and large labeled datasets for training, which
can be a limiting factor.

Regression Forests Regression forests approach pose estimation by using an
ensemble of decision trees to regress object poses directly from pixel values. This
method is efficient and capable of real-time performance on standard hardware,
making it suitable for applications like motion capture in gaming. However, its
performance can degrade with increased object variability unless specifically trained
for generalization. A significant advancement was its application in Microsoft Kinect,
where it enabled real-time human body pose estimation with high accuracy.

Template Matching with Learned Features Unlike traditional template-based
methods that rely on predefined templates, this approach uses machine learning
to dynamically learn templates from the training data. This flexibility allows it to
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effectively deal with a wide range of objects and poses. While this method benefits
from not requiring a rigid set of templates, it still faces challenges in environments
with significant background clutter or when objects appear at drastically different
scales. It has been effectively used in robotic systems to recognize and manipulate
objects in unstructured environments.

Unsupervised and Semi-supervised Learning Techniques These techniques
are particularly appealing in scenarios where labeled data is scarce or expensive
to obtain. By using unlabeled data, these methods can reduce the reliance on
extensive labeled datasets, although they typically achieve lower accuracy compared
to supervised methods. Recent developments include the use of generative adversarial
networks (GANs) to augment pose estimation datasets, enhancing the robustness of
pose estimation models under varied conditions.

2.2.5 History of Deep Learning-based 6DoF Pose Estimation Algo-
rithms

Since 2012 a lot of research papers about object pose estimation have been
published, not only for industrial purposes but also for surveillance, video games,
autonomous driving, etc... One of the first and more relevant papers about deep
learning approach is "Model Based Training, Detection and Pose Estimation of
Texture-Less 3D Objects in Heavily Cluttered Scenes" published by Hinterstoißer et
al. in 2012 [20]. Their key idea was to learn a projection function able to map the
data points into one shared and several private latent spaces with an orthogonality
constraint between them. Another important milestone is represented by "Learning
6D Object Pose Estimation Using 3D Object Coordinates" published by Brachmann
et al. in 2014[21]. In this paper, the approach consisted in using a single decision
forest 5 to classify each pixel from an RGB-D image. Once that the object was
obtained using a voting system, an energy function optimization problem was used
to estimate the 6DoF of the object.

PoseCNN In 2017, the NVIDIA Research group in collaboration with Washington
University published PoseCNN: A Convolutional Neural Network for 6D Object
Pose Estimation in Cluttered Scenes [22]. PoseCNN employs a unique approach
by breaking down the pose estimation task into separate components, such as
rotation and translation. This design allows the network to effectively manage the
relationships between these components (Figure 2.7). Initially, the network predicts
an object label for each pixel in the input image. Subsequently, it calculates the 2D
pixel coordinates of the object center by predicting unit vectors from each pixel to
the center. Leveraging semantic labels, pixels associated with an object contribute to
determining the object’s center location through voting mechanisms. Furthermore,
the network estimates the distance from the object center. With known camera
intrinsic6, this information facilitates the recovery of the object’s 3D translation.
Finally, the network estimates the 3D rotation by regressing convolutional features
extracted within the object’s bounding box to a quaternion representation. Notably,

5A single decision forest is a fundamental machine learning model used for classification and
regression tasks. Decision trees recursively partition the input space into regions based on feature
values, assigning labels or predicting values for each region.

6In photography and computer vision, camera intrinsic parameters refer to internal characteristics
of a camera that are independent of external factors such as scene geometry or lighting conditions.
These parameters include focal length, principal point coordinates, and lens distortion coefficients,
which collectively define how light rays are projected onto the camera’s image sensor.
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Figure 2.7. PoseCNN architecture.

this approach of 2D center voting followed by rotation regression proves effective
for both textured and texture-less objects and remains robust against occlusions, as
the network is trained to infer object centers even when they are partially obscured.
This model was so innovative that it is still used for comparison in state-of-the-art
publications.

DeepIM The subsequent year, 2018, Yu Xiang et al. proposed a novel approach
based on the Deep Iterative Matching [23]. The key idea behind DeepIM is to
formulate the pose estimation problem as an optimization task. The network
iteratively refines the initial pose estimate by iteratively matching image features
with object model features. This iterative refinement process enables the network to
gradually improve the accuracy of the pose estimation. The network architecture
consists of two main components: a pose refinement network and a matching network.
The pose refinement network takes an initial pose estimate and an input image as
input and generates a refined pose estimate. The matching network matches features
extracted from the input image with features from a 3D object model to compute a
similarity score, which is used to guide the pose refinement process (Figure 2.8).

PVN3D Wen Gu et al. in 2019 proposed PVN3D [24] for estimating the 6DoF
pose of objects from RGB-D images. The main innovation was about the point-wise
3D keypoints voting mechanism to regress the object pose. PVN3D takes an RGB-D
image as input and extracts features using a CNN. It leverages both RGB and
depth information to capture rich visual features. After that feature generation step,
PVN3D generates a set of 3D keypoints for the object in the scene and assigns each
keypoint a set of votes indicating its potential position in 3D space. These votes
are generated based on the extracted features and are used to estimate the object’s
pose. Finally, the system uses a regression network to predict the 6DoF pose of the
object by aggregating the votes from the keypoints. The network learns to estimate
the object’s translation and rotation parameters directly from the voting results
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Figure 2.8. DeepIM network.

Figure 2.9. PVN3D network.

(Figure 2.9).

MaskedFusion One of the first approaches published in 2020 was MaskedFusion
[25] by Pereira et al., a sophisticated architecture for 6D object pose estimation from
RGB-D images. It begins by generating high-quality instance-level object masks,
leveraging both RGB and depth information. These masks precisely delineate object
boundaries, crucial for accurate localization. The method then fuses RGB features
with mask features to enhance discriminative power. This fusion process ensures
that the network focuses on relevant object regions while suppressing background
clutter. The fused features are passed through a neural network for pose regression.
Trained end-to-end, this network optimizes pose estimation performance. Addi-
tionally, MaskedFusion employs a novel loss function tailored for mask-based pose
estimation. It effectively handles occlusions and cluttered backgrounds, further
improving accuracy (Figure 2.10).

Vision Transformer (ViT) In 2020 Dosovitskiy et al. came up with the paper
"An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale"
[26], this approach applied the Transformer architecture (Figure 2.11), presented
in "Attention is all you need" by Vaswani et al. in 2017 [27], to a computer vision
task. The ViT architecture (Figure 2.12) represented a significant departure from
conventional convolutional neural networks (CNNs). By adopting the transformer
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Figure 2.10. MaskedFusion network.

architecture originally designed for natural language processing tasks, ViT redefined
the general way on how we approach image classification challenges. Rather than
relying on traditional CNN methodologies of convolutions and pooling operations,
ViT revolutionizes image processing by dividing images into fixed-size patches. These
patches are treated as sequences of tokens, like the words in natural language, and
are subsequently fed into a transformer model. Through this novel approach, ViT
facilitates parallelized processing and excels at capturing long-range dependencies
within images. Notably, ViT’s transformation of spatial hierarchies into self-attention
mechanisms has resulted in impressive performance on various image classification
benchmarks. Remarkably, ViT achieves competitive results with significantly fewer
parameters compared to conventional CNN-based models, demonstrating its potential
for efficient and effective image recognition. Nowadays, most of the novel approaches
presented in computer vision conferences utilize ViT or its derivatives to address
challenges and tasks such as pose estimation and object detection.

2.3 Datasets for Object Pose Estimation Tasks
Very complicated models require a huge amount of data to be trained and to

achieve good performance. A dataset, in order to be used for object pose estimation
tasks, needs to be labeled in such a way that the model can attempt to make
predictions and adjust the parameters using the ground truth labels. Therefore, the
labels used in this field should generally comprise 6DoF ground truth poses of the
objects for each frame. The main datasets used for this purpose are:

• LineMod dataset (LM) and its next version LineMod Occluded (LMO) [28]
(2015)

• T-LESS dataset [29] (2017)

• BOP-Datasets (a collection of other well-known datasets) [30] (2018)

• HomebrewedDB [31] (2019)

• HOPE by NVIDIA [32] (2019)
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Figure 2.11. Transformer architecture. Transformers revolutionized various tasks, including
language translation, text generation, and image captioning, by enabling parallelization,
capturing long-range dependencies, and facilitating attention mechanisms. Unlike
recurrent neural networks (RNNs) or convolutional neural networks (CNNs), transformers
rely solely on self-attention mechanisms, allowing them to process entire sequences in
parallel, making them highly efficient for long sequences. Transformers consist of an
encoder-decoder architecture, where the encoder processes input sequences, and the
decoder generates output sequences.

Figure 2.12. ViT architecture.
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• YCB-Video dataset [33] (2020)

These are only some of the most important datasets used in the object pose estimation
task.

2.3.1 Synthetic Data Generation
Some above-listed datasets (such as YCB-Video and T-LESS) not only provide

images with annotations but also include 3D CAD models7 of the objects on which
the pose estimation should be performed. State-of-the-art models tend to utilize
these provided CAD models as an additional resource during training to enhance
the deep learning model’s performance. Moreover, if the object models on which the
prediction should be performed are not included in the dataset, we cannot use the
trained model on new objects. Additionally, creating a dataset for estimating objects’
6DoF can be very challenging and could require years to complete. Consequently,
for industrial applications, this approach is often discarded in favor of synthetic data
generation. In the realm of data science and machine learning, synthetic data refers
to artificially generated data that mimics real-world data patterns and characteristics.
Unlike real data collected from observations or measurements, synthetic data is
created using algorithms or simulation techniques. These methods aim to replicate
the statistical properties and underlying structures of the original data without
disclosing sensitive or proprietary information.

Most of the time, using synthetic data is a way to overcome the lack of data for
training, achieving more flexibility and scalability. However, they also require a more
meticulous selection to avoid non-reliable data, which, if fed into a deep learning
model, could produce non-realistic results. The general goal of deep learning models
is typically to produce predictions over real non-labeled data, therefore synthetic
data must be produced in a way that they can accommodate this task.

There are many techniques used to generate synthetic data for object-pose-
estimation starting from a 3D CAD model. In 2017, Planche et al. proposed the
research paper "DepthSynth: Real-Time Realistic Synthetic Data Generation from
CAD Models for 2.5D Recognition" [34]. The goal of the article was to generate
synthetic depth images to emulate the depth produced by real sensors. This approach
has been used in subsequent papers such as [35], [36], and [37].

In 2019, Tremblay et al. published "Falling Things: A Synthetic Dataset for 3D
Object Detection and Pose Estimation" [38] (Figure 2.13). Their approach involved
creating a custom Unreal Engine 4 (UE4)8 plugin capable of capturing screenshots
in three different environments: a kitchen, a sun temple, and a forest. In each
environment, objects were placed in well-defined positions, while camera orientation
was randomly generated by selecting from predefined poses.

Another very popular approach is to use Blender9 for image rendering. This
7Computer-aided design (CAD), a CAD model refers to a digital representation of a physical

object or system created using specialized software. CAD models encompass detailed geometric
information about the object’s shape, dimensions, and structural features.

8Unreal Engine is a widely-used game engine developed by Epic Games. Originally introduced
in 1998, the Unreal Engine has since evolved into a comprehensive suite of tools and technologies
for creating high-fidelity, real-time experiences across various platforms, including video games,
virtual reality (VR), augmented reality (AR), architectural visualization, and film production. The
Unreal Engine provides a robust framework for rendering three-dimensional environments, handling
physics simulations, managing audio effects, and implementing complex gameplay mechanics.

9Blender is an open-source software suite renowned for its comprehensive set of tools and capa-
bilities. Developed by the Blender Foundation, Blender offers a wide range of features for creating,
editing, and rendering three-dimensional content across various domains, including animation, visual
effects, game development, and architectural visualization.
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Figure 2.13. Example of synthetic data generation. Image taken from "Falling Things: A
Synthetic Dataset for 3D Object Detection and Pose Estimation" [38]

.

methodology typically involves generating random scenes in which the objects of
interest are randomly placed, along with additional objects to simulate occlusion
and random noise. [39][40][41][42] (Figure 2.14)

2.4 Understanding Immersive Technologies
In this project, as announced in the introduction, we leverage Mixed Reality

technology for creating a tool that can be used in the industrial chain. To provide a
definition of Mixed Reality (MR), we first have to define what Virtual Reality (VR)
and Augmented Reality (AR) are.

2.4.1 Augmented Reality
Augmented Reality (AR) is a technology that integrates digital elements, such

as images, videos, or 3D models, into the real-world environment. It enhances the
user’s perception of reality by overlaying virtual elements onto the physical world in
real-time. This augmentation is interactive, offering users additional information,
context, or experiences. AR can be experienced through various devices, including
AR visors (e.g., Meta Quests, HTC Vive, Microsoft HoloLens) as well as smartphones
and AR glasses. Popular examples of AR applications include Snapchat filters and
Pokémon GO.
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(a) (b)

Figure 2.14. Examples of synthetic data generation. Images taken from "Generating
Synthetic Data for Evaluation and Improvement of Deep 6D Pose Estimation"[40]

2.4.2 Virtual Reality
Virtual Reality (VR) creates entirely immersive, computer-generated environ-

ments that replace the real world. Users typically wear VR headsets to block out
their physical surroundings and immerse themselves entirely in the virtual environ-
ment. VR experiences can range from gaming and simulations to virtual tours and
training exercises.

2.4.3 Mixed Reality
Mixed Reality (MR) combines elements of both AR and VR, allowing virtual

objects to interact with the real world and vice versa. It integrates virtual elements
into the user’s physical environment, enabling interaction with virtual objects while
maintaining awareness of the real world. MR experiences often involve spatial
mapping and tracking technologies to blend virtual and physical elements seamlessly.
Like VR, MR requires a visor to be used effectively.
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Figure 2.15. Image published on Forbes to explain the main differences between VR, AR
and MR.
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Chapter 3

First Approach: VideoPose

The first approach we tried to start with was VideoPose, introduced by Beedu et
al. in 2021, the VideoPose framework [43] offers a novel approach to 6D object pose
estimation utilizing a transformer architecture optimized for video sequences. The
framework specifically leverages the sequential nature of video to improve prediction
accuracy over time through a structured network that processes and predicts pose
transformations frame by frame.

The primary components of VideoPose (Figure 3.1) include a Transformer for
encoding visual features from sequential RGB-D frame patches, a Pose Regressor,
and a Future Feature Predictor. The Transformer module, based on the Swin
Transformer [44] or BEiT Transformer [45], extracts rich spatial-temporal features
from each frame, enabling the model to understand and interpret complex object
movements and changes in the scene.

The Pose Regressor is responsible for calculating the current frame’s 6D pose,
encompassing both rotation and translation vectors. Simultaneously, the Future
Feature Predictor looks ahead by predicting the visual features of subsequent frames,
which is crucial for maintaining temporal consistency and enhancing the robustness
of pose estimations.

An innovative aspect of VideoPose is its use of past pose estimations to influence
and correct the current frame’s pose predictions, embodying a feedback mechanism
that refines predictions over time. This method not only utilizes the spatial informa-
tion present in individual frames but also dynamically incorporates historical data
from the video stream, significantly boosting prediction accuracy and stability.

Even if the approach was quite outdated, it was one of the most reliable and
potentially accurate with RGB images, indeed most of the other works were also
relying on the depth information to regress the position. We have started our
implementation from the original code, posted on GitHub: https://github.com/
ApoorvaBeedu/VideoPose.

3.1 YOLOv8 as Object Detection Module
VideoPose assumes that the objects within the frame are already detected; hence,

the 2D bounding boxes are provided as input to the model. However, there is no
object detection module directly implemented. We tried three well-known approaches
while developing that part:

• Mask R-CNN: Described in Section 2.1.2.

https://github.com/ApoorvaBeedu/VideoPose
https://github.com/ApoorvaBeedu/VideoPose
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Figure 3.1. VideoPose architecture.

• MobileNet: MobileNet is a lightweight convolutional neural network architec-
ture tailored for efficient object detection on mobile and embedded devices,
developed by Howard et al. in 2017 [46]. MobileNet primarily utilizes depth-
wise separable convolutions, which split the standard convolution into two
separate layers: depth-wise convolution and point-wise convolution. This
separation significantly reduces computational cost while preserving accuracy.

• YOLOv8: Described in Section 2.1.3.

Although the first two listed approaches are not as recent as YOLOv8, the reduced
capabilities were good motivation for using them. However, we decided to use
YOLOv8 because it provides the best trade-off between inference time and accuracy.
YOLOv8 is directly available in PyTorch1, therefore it can be directly loaded,
instantiated, and trained within a few lines of code, as shown in Figure 3.2.

3.2 VideoPose Implementation
Although the released code had the possibility to be run using the flag "–no-

depth", it was probably tested only using the depth information as it was not
working using RGB images even including the specified flag. To fix the described
issue, we have modified the model’s code as it was expecting depth features even
if not available. Once done, we fixed other minor bugs due to the newest library
versions. The biggest problem was about adapting the model to our novel dataset
(see Section 5.2 for details). We removed some post-processing functions as they were
not needed for our specific task, and re-arranged the input features to be coherent
with the synthetic dataset.

1PyTorch is an open-source machine learning library developed by Facebook’s AI Research lab
(FAIR). It is primarily used for applications such as natural language processing, computer vision,
and deep learning.
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Figure 3.2. Usage of YOLOv8 mode through PyTorch.

3.3 Tests and Results
This section is dedicated to the tests and results we achieved during the training

and testing phase. During the preliminary training attempts, we noticed that the
losses used were not converging during the epochs. This behavior was probably due
to the fact that we were not using a pre-trained version of the VideoPose model.
Unfortunately, this was not possible due to incompatibilities not solved by the code
publisher. Indeed, the GPT version used in the decoder part was not available
anymore on Hugging Face2. Therefore, the provided checkpoint was not working,
thus making it impossible to start from a pre-trained version of VideoPose.

To check whether the problem was with the dataset or the model, we decided to
download YCB-Video and run multiple trainings to reproduce the results described
in the paper. Again, the same problem occurred, resulting in very bad results even
on the original dataset. Due to the fact that we were not able to reproduce the
results, we decided to abandon the VideoPose approach.

We attempted to train the model both using depth features and without them.
However, as we can see from Figure 3.3 and Figure 3.4, as well as Figure 3.5 and
Figure 3.6, the results are very similar. The graphs represent:

• ADD: It measures the average Euclidean distance between corresponding 3D
object vertices predicted by the model and the ground truth 3D object vertices.
It provides a quantitative measure of how closely the estimated pose matches
the true pose. In this specific case, it is used as a loss instead of a score.
Therefore, we expect ADD to decrease as the model improves in predicting
poses. A lower ADD value, tending towards 0, indicates better performance in
accurately matching the predicted poses to the ground truth.

• future_loss: This loss is used to train the future prediction heads. We expect
future_loss to decrease as the model becomes better at predicting future states
or poses. A decreasing future_loss suggests that the model’s predictions of
future states are becoming more accurate over time.

2Hugging Face is a company that specializes in natural language processing (NLP) technologies
and develops tools and frameworks to facilitate NLP research and application development. One of
its most well-known contributions is the "Transformers" library, which provides pre-trained models
for various NLP tasks such as text classification, question answering, and language translation.
Since vision tasks can be seen as an NLP task in which the frame patches are tokens (words), they
are also used in computer vision tasks.
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• rt_loss: This loss is used to train the pose regressor, measuring the error in
the predicted rotation. We expect rt_loss to decrease as the model improves in
predicting rotations. A lower rt_loss indicates that the model is more accurate
in estimating rotational transformations.

• distance_loss: This loss is used to train the translation part of the pose
regressor by indicating the error in the translation of points. We expect
distance_loss to decrease as the model learns to more accurately predict
translations. A lower distance_loss signifies better performance in predicting
the spatial displacement of points.

• rotation_distance_loss: This loss combines both rt_loss and distance_loss.
We expect rotation_distance_loss to decrease as the model improves overall in
predicting both rotations and translations. A decreasing rotation_distance_loss
indicates that the model is effectively learning to balance and optimize both
rotational and translational aspects of pose estimation.

The two trainings were run using the following hyperparameters:

• Batch Size: 4

• Video Length: 3

• Backbone: Swin Transformer

• Epochs: 20

For training the models, an NVIDIA GeForce 4090 was utilized, and the processes
ran for approximately 15 days for the model without depth features and 22 days for
the one with depth features. The Swin Transformer backbone was lighter than the
BEiT backbone, allowing us to increase the video length number. Therefore, at each
step, the model was processing the selected frames and the previous two to take
advantage of the previous predicted positions.

The ADD, in this case can also be seen as a general overview of the losses. Despite
its oscillations, the average value is approximately 10.5 (considering the training
phase with depth features), which is very high considering that it should tend to 0.
The ADD oscillations are clearly derived from the rotation_distance_loss, which
tends to suffer from the same phenomenon. The overall values of the distance_loss
and rt_loss are very high at the end of the process.
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(a) (b)

(c) (d)

(e)

Figure 3.3. These plots represent the losses obtained during the training phase using
the YCB-Video dataset and depth features. The losses shown in (a), (b), (d), and (e)
appear to trend towards 0, which could misleadingly suggest that the model is learning.
However, this is not the case. A key indicator of poor training is the oscillations observed
in (a) and (c). While some oscillation is acceptable during the early epochs, it should
reduce or disappear over time. Moreover, a closer look at the y-axes of all graphs (except
for the future loss) reveals that the steps are still quite large, indicating that, even if the
losses seem to be converging, the values remain too high. Finally, we can confirm the
model is not learning effectively by examining the ADD graph (a), which represents the
average distance between the predicted and ground truth points.
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(a) (b)

(c) (d)

(e)

Figure 3.4. These plots represent the losses obtained during the testing phase using the
YCB-Video dataset and depth features. Notably, in most graphs, we cannot even roughly
estimate the trend across epochs, except for the graph concerning the future loss (b).
This indicates that the model was not effectively learning to regress the object’s pose.
In fact, only the layer responsible for predicting the future loss was making progress.
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(a) (b)

(c) (d)

(e)

Figure 3.5. These plots represent the losses obtained during the training phase using
YCB-Video dataset but without using depth features. The losses shown in (a), (b), (d),
and (e) appear to trend towards 0, which could misleadingly suggest that the model is
learning. However, this is not the case. A key indicator of poor training is the oscillations
observed in (a) and (c). While some oscillation is acceptable during the early epochs, it
should reduce or disappear over time. Moreover, a closer look at the y-axes of all graphs
(except for the future loss) reveals that the steps are still quite large, indicating that,
even if the losses seem to be converging, the values remain too high. Finally, we can
confirm the model is not learning effectively by examining the ADD graph (a), which
represents the average distance between the predicted and ground truth points.
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(a) (b)

(c) (d)

(e)

Figure 3.6. These plots represent the losses obtained during the testing phase using
YCB-Video dataset but without using depth features. Notably, in most graphs, we
cannot even roughly estimate the trend across epochs, except for the graph concerning
the future loss (b). This indicates that the model was not effectively learning to regress
the object’s pose. In fact, only the layer responsible for predicting the future loss was
making progress.
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Chapter 4

System Architecture

4.1 Use-Cases and Goals
To provide a full and comprehensive view of the system architecture, we want to

highlight the goals and use cases for which the system is designed.

4.1.1 Project Goal
As mentioned in Chapter 1, the goal was to develop a framework for Industry

4.0, ready to be deployed in an industrial environment. The framework needed to
provide the ability to create a custom dataset using the user’s own CAD models,
ensuring compatibility with the YOLO backbone and the PoET transformer (our
proposed solution), which are used for object detection and 6D pose estimation,
respectively. Additionally, since the objective was to assist satellite operators during
assembly phases, we aimed to develop a communication system that implements
two-way communication between the model and an AR visor.

We can summarize the key contributions as follows:

1. Enabled the easy generation of synthetic images from CAD models. This
generator stands out from existing solutions due to its enhanced usability and
flexibility. The developed scripts require minimal configuration, allowing users
to generate an entire synthetic dataset with a single terminal command.

2. Streamlined the training and evaluation of YOLO and PoET models. Similar
to the synthetic data generation, the scripts allow users to quickly configure
settings and achieve a well-trained, fine-tuned model. We also resolved errors
and introduced new features, such as transfer learning and additional model
parameters.

3. Simplified testing of both YOLO and PoET models using a webcam or visor.
No public project currently offers an easy way to interface between a model
and a visor. The visor used in this project was released in December 2023, and
no public libraries exist for convenient access to its raw camera feeds.

4. Trained and fine-tuned both PoET and YOLO models on a given set of
industrial objects. The training involved conducting 13 different experiments
with 13 different configurations to compare results. The final configuration
was calibrated for the specific use case, balancing computational complexity
and inference-time requirements.



4.2 PoET Architecture Overview 30

4.1.2 Project Use-Cases
Having defined the project’s goals, we also want to briefly discuss the use cases.

As mentioned in previous sections, the primary use case involves the operator
assembling the satellite. Since these operations are mostly manual, it is reasonable
to assume that the operator might make some errors during certain steps or may
have difficulty remembering all the necessary procedures. The framework is designed
to address these issues, thereby eliminating the need for a quality inspector to check
for potential errors at each step. The system should provide detailed information
about the current assembly step, minimizing the likelihood of incorrect interactions
between the operator and the satellite.

During these operations, it is important to note that the objects will not be
manipulated by the operator; thus, the camera (representing the operator) will be
moving while all the objects remain stationary, taking into account the quality-check
requirements. To accommodate this use case, we will test the model’s performance
not only analytically, providing numerical results, but also in real-world scenarios.

4.2 PoET Architecture Overview
The main part of our system architecture is PoET, it was presented in the

paper: "PoET: Pose Estimation Transformer for Single-View, Multi-Object 6D
Pose Estimation" released by Jantos et al. in 2023 [47]. This brilliant research
has demonstrated how even a single-view RGB image could be used for performing
good 6D pose estimation. The main difference with respect to VideoPose(Figure 3)
stands in considering not necessarily a sequence of frames for computing the pose
of an object, but leveraging the information of a single RGB image to infer the
pose with the highest precision possible. The architecture shown in Figure 4.1 is
mainly composed of an object detector backbone and the PoET transformer itself.
The backbone not only detects and classifies the object in the frame, but it also
produces intermediate feature maps. Not all detectors are able to calculate these
feature maps; indeed, a pyramidal structure is needed. The authors propose three
different backbones:

• Mask R-CNN: Already described in Section 2.1.2

• Faster R-CNN: Already described in Section 2.1.2

• Scaled-YOLOv4 [48]: Scaled-YOLOv4 is an improved version of the YOLOv4
object detection model. The term "scaled" indicates that the model can
efficiently scale up or down, based on the task’s needs, providing a good
trade-off between qualitative factors1 and quantitative factors2.

The best results are obtained using the Scaled-YOLOv4 backbone, which provides
optimal inference time without reducing the overall precision of the network.

4.3 Scaled-YOLOv4 Backbone
Scaled-YOLOv4 is a modified version of standard YOLOv4 model presented

by Wang et al.[48] in 2021. The main goal of this backbone is still to predict
1Qualitative factors may include aspects such as interpretability, ease of implementation, and

robustness to various data conditions.
2Quantitative factors typically refer to metrics such as accuracy, speed, and computational

efficiency.
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Figure 4.1. PoET architecture.

both classes and bounding boxes of the objects within a frame, but proving also
intermediate multiscale feature maps. Multiscale feature maps refer to feature maps
that capture information at different scales or levels of detail within an image. This
allows the model to perceive objects of various sizes and shapes effectively. These
are a typical output of the pyramidal-based object detector (such as YOLOv4). The
"scaled" means that the model is reduced to lower the resources specifics needed
to run it. This could allow the model to be executed on low-end devices with
reduced computing capabilities. Typical approaches in model scaling, could lead to
disadvantageous trade-offs between qualitative and quantitative factors, while the
authors of the paper demonstrated that their model can reach optimal trade-offs,
achieving good results even low-end devices.

4.3.1 Knowledge Basis
Before describing in detail the Scaled-YOLO paper, we want to give some more

detailed overview on the topics that will be treated.

PAN Path Aggregation Module was presented for the first time in YOLOv3
[49] to address the issue of feature resolution degradation. This was a common
single-stage detectors’ problem derived by the feature down-sampling performed
in the network. The degradation was leading to a loss of information, making
less efficient and accurate the detector itself. To mitigate the problem, YOLOv3
incorporates the FPN (Section 2.1.2) and PAN. The PAN architecture enhances the
feature pyramid network by introducing a path aggregation module, which efficiently
combines features from different levels of the feature pyramid.

SPP Spatial Pyramid Pooling was introduced in YOLOv2 to enable the YOLO
model to accept input images of arbitrary sizes while maintaining a fixed-size feature
representation. The main idea behind Spatial Pyramid Pooling is to divide the final
feature map generated by the convolutional layers into a grid of fixed-size regions and
then apply pooling operations within each region. This allows the model to capture
features at multiple scales and spatial locations, making it robust to variations in
object sizes and positions within the input image.

CSPNets CSPNets [50] (Cross Stage Partial Networks), proposed by Wang et
al. in 2019, are a particular alteration of classical CNN-based algorithms, such as
ResNet, ResNeXt, and DenseNet. When CSPNets are applied to these existing
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frameworks, the computational effort is reduced by 10% to 20%, outperforming the
original versions in terms of both inference time and accuracy. This enhancement
was made possible thanks to the analysis of existing computational bottlenecks.
By analyzing CNN-based algorithms, the authors stated that at a certain layer
(regardless of the architecture used), part of the gradient used in backpropagation
can be considered redundant. In order to eliminate this redundancy, the proposal
was to split the image into two parts: the first part is still passed through the
subsequent layers, while the second part skips this step and is directly concatenated
to the output of the processed part towards the end. This mechanism allows the
model to run with less memory and to run faster by skipping many steps. Despite
the redundancy removal, this technique is also useful for increasing accuracy.

CSP-Darknet53 CSP-Darknet53 serves as the default backbone architecture for
YOLOv4 [51]. As implied by the name, it is an enhancement of Darknet53 [49]
incorporating CSPNet principles. The standard Darknet53 architecture is built
upon Darknet blocks, which consist of convolutional layers, batch normalization,
and activation functions such as ReLU. Each Darknet block includes multiple
convolutional layers followed by down-sampling layers (e.g., max-pooling or strided
convolution) to progressively reduce spatial dimensions while increasing feature
depth. CSPNet integration occurs at a specific layer (which may vary depending on
the implementation). Following the Darknet blocks, there are additional intermediate
convolutional layers for extracting high-level features. A global average pooling layer
is typically applied before fully connected layers to reduce the spatial dimensions of
feature maps to a single vector per feature map.

4.3.2 Proposed Models
The authors proposed three models: YOLOv4-tiny, YOLOv4-large and YOLOv4-

CSP; designed respectively for low-end GPUs, high-end GPUs and general purposes.

YOLOv4-CSP The authors proposed this innovative CSP-ized version of YOLOv4.
In the CSP-Darknet53 backbone, the CSP stage represents an improvement over
the classical Darknet implementation only when the considered layer k satisfies
k > 1. Therefore, the first layer of the CSP-Darknet53 was restored into the classical
Darknet layer. The PAN architecture represents the neck of YOLOv4 and most
of the effort has been spent to CSP-ize this part of the framework. The original
PAN implemented in CSP-Darknet53, was used to integrate features given in output
by different feature pyramids through a bunch of reversed Darknet residual layer3

without shortcut connections. The authors applied the CSPNet also to this part of
the network to cut down about 40% of the computation (Figure 4.2).

YOLOv4-tiny This particular version aims to drastically reduce the computa-
tional time to run the model on low-end devices. The backbone of the model is
CSPPOSANet combined with PCB architecture. CSPPOSANet is an architecture
based on CSP-Darknet53; it also combines PAM4 and FPN to build reliable features.
PCB (Partial Computational Block) was specifically designed to handle occluded

3In deep learning, residual layers are used to skip one or more subsequent layers.
4Position Attention Module (PAM) is designed to capture spatial dependencies and relationships

between different locations within feature maps, highlighting important regions and suppressing
irrelevant or redundant information.
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Figure 4.2. Image taken from the original Scaled-YOLOv4 paper [48]. On the left side the
original PAN architecture. On the right side the CSP-ized version of PAN.

or masked regions within images. The architecture is mainly composed of three
modules:

• Partial Convolutional Block (PConv): These blocks aim to exclude pixels
affected by occlusion or masking from the computation, allowing the network
to focus solely on the visible information.

• Partial Residual Block (PResBlock): These blocks incorporate partial con-
volutions within residual connections, enabling the network to learn residual
features while accounting for occluded regions. By selectively processing valid
pixels, PResBlock facilitates the extraction of meaningful information from
occluded regions.

• Partial Upsampling Block (PUpsample): PUpsample selectively processes valid
pixels to prevent the introduction of artifacts in the up-sampled feature maps.

From the tests performed on the COCO dataset, YOLOv4-tiny achieved an inference
time that is eight times faster than the classical YOLOv4 model; the measured
accuracy is approximately ≈ 2

3 of the original one. This makes the model a perfect
solution for real-time object detection.

YOLOv4-large This second version is mainly designed to work with cloud GPUs
(high-end devices) for very precise detections. The backbone, similarly to the classical
YOLOv4, is CSP-Darknet53. Backbone’s features are then passed through a FPN to
scale up/down the features. What is new in this architecture, are the scale-specific
detection heads. YOLOv4-large incorporates scale-specific detection heads for each
of the feature scales (YOLOv4-P5, YOLOv4-P6, YOLOv4-P7). These detection
heads are responsible for predicting bounding boxes and class probabilities for objects
at their respective scales. After the individual detection heads produce predictions
at their respective scales, the predictions are typically fused to generate the final set
of detections. From the tests, the model achieved the highest accuracy score with
an inference time that is about 3 times slower than the classical YOLOv4 model.
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Figure 4.3. Deformable DETR, image taken from the original paper [52].

4.4 PoET Transformer
The PoET model consists of a multi-head attention-based transformer, which

is a modified version of the Deformable DETR transformer proposed by Zhu et
al. [52]. A Deformable transformer (Figure 4.3), in contrast with the standard
DETR, can process multiscale feature maps5. The main idea behind using feature
map refinement is to generate features that capture the global information of the
frame. This typically leads to faster convergence rates than a regular transformer
architecture.

Starting from the standard Deformable DETR, PoET modifies the decoder
while keeping the encoder unchanged. The decoder updates aim to capture more
information from the detection step. In this implementation, the decoder takes as
input:

• The encoder output.

• The normalized bounding box information for each detected object (center
coordinates, width, and height of the box).

• Keypoints.

In the standard Deformable DETR, bounding box information was not provided
to the decoder, which instead was provided with learned object queries. Moreover,
in the original Deformable DETR, keypoints were randomly sampled around some
reference points. These points are learned through a fully connected layer. The

5Multi-scale feature maps refer to feature maps that capture information at different scales or
levels of detail within an image. This allows the model to perceive objects of various sizes and
shapes effectively.
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authors propose to use the center coordinates of the detected bounding boxes as
reference points, so the keypoints sampled around them will incorporate not only
the single object information but also the global image features.

As a last step, the output features produced by the decoder are then passed
as input to a rotation head and a translation head, both implemented using a
Multi-Layer Perceptron (MLP). In detail:

• Translation Head: This head predicts directly the translation vector t̄ =
(t̄x, t̄y, t̄z), given the ground truth translation t. This head during the training
phase uses the L2-loss defined as the average of the squared differences between
the predicted values and the true values:

Lt = ||t− t̄||2

The squaring operation in the L2 loss amplifies the effect of large errors, making
the model more sensitive to outliers.

• Rotation Head: This head predicts the 6D rotation vector. The authors used
this representation as it does not suffer from discontinuities (while quaternions
do). The head training is based upon a geodesic loss, defined as the geodesic
distance between the predicted output and the true output. The geodesic
distance between two points on a manifold is the length of the shortest path
connecting them along the surface of the manifold:

Lrot = arcos1
2(Tr(RR̄T )− 1)

To combine the two losses, the authors used a weighted multitask loss:

L = γtLt + γrotLrot

The loss is calculated for each object and then is averaged with the resultant loss of
the other objects in the batch.

4.5 Visor engine and Communication
The framework is also composed of an augmented reality core, the first idea

was to use Unity to develop all the code relative to the visors. Unity is a cross-
platform game engine that provides an intuitive way to develop 2D and 3D games
or applications for a vast plethora of platforms such as the AR/MR/VR visors. It
includes a visual editor for arranging assets, creating levels, and setting up game
logic. Unity uses C# as its primary scripting language that can be also integrated
with SDKs and libraries downloaded from the Asset Store.

During the preliminary phase of the project, the goal was to deploy the script
as embedded6 in the visor. We looked for existing projects about transformer
deployment on visors. Nevertheless, no projects were found on that specific topic.
We decided to check if at least the backbone model was deployable on the visors. In
this case, we found a couple of valid projects, such as the following two:

• https://github.com/dangberg/HoloLens-YOLO-Object-Detection.

• https://github.com/doughtmw/YoloDetectionHoloLens-Unity.
6Embedded in this case refers to the fact that a script can run on a visor.

https://github.com/dangberg/HoloLens-YOLO-Object-Detection
https://github.com/doughtmw/YoloDetectionHoloLens-Unity
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Figure 4.4. The image represents the high-level architecture in which the visor captures
images through the integrated cameras and sends them to the server. The client sends
these frames to the server deployed in Docker using a TCP-connection. Lastly the server
sends back the predictions to the client that draws them into the operator’s view.

Both of these projects are specifically designed to run on a Microsoft HoloLens.
Indeed, the most important requirement to deploy a computer vision model on a
visor is the ability to access the images through the API. None of the most famous
visors, such as Meta or HTC ones, have the ability to access the onboard cameras,
while both HoloLens and HoloLens 2 do. By going deeper into the repositories, we
found out that all the projects assumed that the YOLO model was:

• Quantized: To quantize a model means that we are using techniques to reduce
the capabilities needed to run the model. A typical technique is to reduce the
bits used to represent the model weights. This can trivially lead to performance
degradation in terms of accuracy metrics.

• Trained on a few classes (3 or 4): By reducing the number of classes, the model
performance in terms of inference time can be boosted.

However, even with these assumptions, the performance in terms of FPS achieved
was very poor. These projects were not suitable as starting points for our case study,
as we needed to deploy not only the YOLO backbone but also the transformer.
Nonetheless, this helped us understand that PoET could not be deployed onto the
visor. Considering that the object detection part takes too much time to perform,
this suggests that a transformer would take several seconds to output the predictions,
creating a bottleneck.

The solution we devised was to abandon the idea of deploying the models as
stand-alone on the visors and instead develop a client-server architecture. In this
setup, the client is the visor, which can send images through a TCP socket, while the
server runs on a host machine capable of receiving the images, running the model,
and sending back the computed predictions to the visors (Figure 4.4).

Another important aspect we addressed was the potential for future improvements
to this project. The Microsoft HoloLens is quite an old project, and as of now,
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Microsoft has not announced any new visor in the HoloLens family. Therefore,
we sought a more reliable solution for the future, enabling future developers to
work on this project without being hindered by the outdated visor framework.
After examining various industrial visors, which are not intended for the public,
we found that the Varjo XR-4 visor offers an SDK for accessing the cameras.
Thanks to Sapienza University and VisionLab, we were able to utilize this hardware.
However, since the Varjo SDK is written in C++, it was not compatible with Unity.
Consequently, we decided to abandon Unity as the engine and instead use the custom
engine provided by Varjo SDK.
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Chapter 5

System Implementation

5.1 Project Structure Description
We can split the project in three different parts:

1. Synthetic Video Generation: Described in Section 5.2.

2. PoET: Described in Section 5.3.

3. Model Deployment: Described in Section 5.4.

5.2 Synthetic Video Generation
Before developing a deep learning model or, in general, when dealing with

machine learning, the first step involves discussing the needed data. A good model
cannot achieve good performance without a solid dataset. In our case, the objects
are covered by the Non-Disclosure Agreement (NDA)1, therefore they are not part
of a publicly available dataset, hence an ad-hoc dataset was needed. However, as
discussed in Section 2.3, the most famous datasets are created by big universities and
research groups. This process can take up to years to achieve a large enough labeled
dataset. To drastically reduce the time and effort needed for dataset creation, we
leveraged synthetic data generation techniques. Through this process we will obtain:

• GeneratedScenes: Set of labeled synthetic sequences in YCB-Video format
(Section 5.2.1).

• GeneratedScenesBOP: Set of labeled synthetic sequences in BOP-Format
(Section 5.2.3).

• YoloDataset: Set of labeled synthetic sequences in YOLO-Format (Section 5.2.4).

5.2.1 Blender Scripting
Blender offers a large set of Python APIs; therefore, we chose it as the core of the

data rendering part. The high-level idea of the Blender script is to randomly pick a
subset of objects among the available ones, then place them in a pseudo-random

1NDA (Non-Disclosure Agreement): A legal contract between at least two parties that outlines
confidential material, knowledge, or information that the parties wish to share with one another
for certain purposes but wish to restrict access to or by third parties. It is a common tool used to
protect sensitive information and trade secrets.
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way inside a well-defined 3D space, and lastly move the camera to render the frames.
All the 3D object models were provided in two formats:

• OBJ extension: OBJ (Object) is a simple geometry file format used by Wave-
front Technologies. It stores 3D models as a collection of vertices, faces, and
texture coordinates. OBJ files are widely supported and can be imported into
many 3D modeling software applications.

• PLY extension: PLY (Polygon File Format) is a file format used to store 3D
models as a collection of polygons. It supports vertex and face data, as well as
additional properties like color and normal vectors. PLY files are commonly
used in computer graphics and are supported by many 3D modeling and
rendering software.

In this part we used only the .obj files, as they can be loaded in Blender, while .ply
are used only in the PoET model.

In order to differentiate as much as possible the generated scenes (i.e., each video
is a sequence), we introduced a lot of randomized elements:

• Number, color, position, and intensity of Point Lights.

• Intensity and color of the environmental light.

• Number and position of the 3D models.

• Background texture of the scene.

• Number, duration and path of the camera movements.

• Gravity force simulation.

• Number of frames for each sequence.

Now we will discuss each point in detail to delve deeper into the project design
choices. In a real-world scenario, we cannot assume that the light is uniform and
always with the same intensity. By adding multiple light sources and by modifying
their properties such as intensity, color and position, we modeled a general lighting
condition of a room. This is fundamental also for producing noise given by the
shadows and by the light that is reflected by the objects. The number of objects is
also randomized to ensure that the trained model does not expect always the same
number of instances in a frame. Each object cannot appear twice in a frame, this
was one of the constraint imposed by the company.

In Blender, the background color can be changed; however, we cannot assign
a texture to it. To overcome this issue, we decided to create a large box in which
the objects can be spawned. Each panel composing the box can have a different
texture, allowing us to randomly pick from a set of textures to assign to each panel
(Figure 5.2).

We managed the camera movements in a way that the camera travels around
the object by keeping the rotation consistent to look always in the center of the
world. In detail, before starting the simulation, part of the script chooses the number
of movements that the camera should make in the sequence. For each movement,
the script computes the starting and target point. The target point is picked such
that it lies on a 3D sphere centered at (0,0,0) with a radius r ∈ [1, 2.8]. Once the
target position is fixed, the script randomly picks the duration of the movement (in
seconds). This allows us to determine how many frames the camera has to reach the



5.2 Synthetic Video Generation 40

Figure 5.1. YAML configuration file, through these parameters we can modify each single
aspect of the scene generation without the need of changing the code.

destination starting from its current position. The route of the camera is not linear;
instead, it follows a curved trajectory to guarantee smooth movement along the
path. This movement is implemented through a Bézier curve, a parametric curve
used in computer graphics and animation to create smooth and elegant shapes and
trajectories. It is defined by a set of control points that influence the shape of the
curve:

B(t) =
∑n

i=0
(n

i

)
(1− t)n−itiPi

For each frame of the movement sequence, the script computes a keyframe, saving
both rotation and position of the camera. During rendering, by simply setting the
keyframe, the camera will be moved and rotated accordingly to the stored values.

We decided not only to (pseudo) randomly place the objects in the box but also
to apply a gravity force with an intensity f ∈ [−2, 2]. This force is applied only for
a few seconds, allowing the objects to "interact" with each other and creating more
realistic poses in the scene.

The last randomized parameter is the number of frames per sequence, this
number is picked in a range specified by the user.

One of the goal of this script was also to make it fully configurable without
changing anything in the code, we implemented a configuration YAML file in which
every single aspect of the generation can be changed (Figure 5.1).

The most important parameter is the number of scenes to be generated for each
blend file. In our experiments, we implemented two different Blender scenes (i.e.,
blend files). The first one is already populated with other object models (retrieved
from the YCB-Video dataset), while the second one is empty. The main goal of the
first blend file is to include objects that will not be labeled in the dataset to produce
occlusion (Figure 5.2).
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(a) (b)

Figure 5.2. On the left side: First blend file with preloaded objects. The background
texture is not set as it will be dynamically loaded in the script. On the right side: Box
in the blend file containing the objects.

Labeling For producing a dataset, we need a label file associated to each frame
representing the needed information about the whole image. As described in Sec-
tion 2.3, most of the state-of-the-art approaches, tend to test their models on at least
two or three datasets. The most widely used is YCB-Video dataset, therefore we
decided to adopt its labeling format. Online you can find mainly two YCB versions,
the original version and the one provided in BOP format. In this specific step, we
chose the classical labeling format with the following structure:

Dataset/
0000/

000000-color.png
000000-depth.png
000000-seg.png
000000-meta.npy
000001-color.png
000001-depth.png
000001-seg.png
000001-meta.npy
...
xxxxxx-color.png
xxxxxx-depth.png
xxxxxx-seg.png
xxxxxx-meta.npy

0001/
...
yyyyyy-color.png
yyyyyy-depth.png
yyyyyy-seg.png
yyyyyy-meta.npy

...
zzzz/
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Each folder under the Dataset/ folder (i.e. 0000/, ..., zzzz/) represent a video
sequence and contains four files for each frame:

• xxxxxx-color.png: RGB frame.

• xxxxxx-depth.png: Depth map.

• xxxxxx-seg.png: Semantic segmentation where each object is segmented with
a different color.

• xxxxxx-meta.npy: NumPy2 file containing all the frame’s labels. The structure
of each NumPy file is the following:

– cls_indexes: Array containing the IDs of the object in the frame.
– poses: 4x4 matrix specifying the 6DoF pose of the objects (-th matrix

corresponds to the 6Dposes of the -th model in cls_indexes).
– blendercam_in_world: 4x4 matrix specifying the 6DoF pose of the

camera.
– intrinsic_matrix: Matrix specifying the camera intrinsic parameters.

By examining each pose of a certain object in a sequence, we notice that it remains
consistent across frames. While this might seem counterintuitive, it’s important
to consider how the frames are generated: the object’s pose remains unchanged
during sequence rendering, while it’s the camera position that is updated. In pose
estimation tasks, we cannot directly regress the real object pose; instead, we regress
the object pose relative to the camera. In other words, we assume that the camera
is static, representing the center of the world, while the entire external environment
moves. Given the real object pose, and the camera pose, we can simply apply
geometric transformations to obtain the 4x4 matrix representing the object pose
relative to the camera’s view. Given the 4x4 6-DoF matrix representing the camera
pose C and the 4x4 6-DoF matrix representing the object pose O (representing the
real-world pose of the object), the object poses relative to the camera’s view Orelative
can be obtained using the following operations:

Orelative = C−1 ×O

=
[
RC tC

0 1

]−1
×

[
RO tO

0 1

]
=

[
RT

C −RT
C · tC

0 1

]
×

[
RO tO

0 1

]
=

[
RT

C ·RO RT
C · (tO − tC)

0 1

]
(5.1)

Here, RC and tC are the rotation and translation components of the camera pose
matrix C respectively, and RO and tO are the rotation and translation components
of the object pose matrix O respectively.

2NumPy is a fundamental package for scientific computing with Python. It provides support
for large, multidimensional arrays and matrices, along with a collection of mathematical functions
to operate on these arrays. NumPy is widely used in various fields such as physics, engineering,
finance, machine learning, and more.
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(a) (b)

Figure 5.3. Two examples of generated frames, as we can see they have different background
textures and different light settings.

5.2.2 Bounding Box Generation
In Section 2.2, we stated that to perform accurate pose estimation, we typically

rely on accurate object detection. To train an object detector, we need ad-hoc labeled
data. Generally, what we need in terms of labeling are the bounding boxes contained
within a frame and the associated object classes. In the previous Section 5.2.1, we
discussed how the synthetic dataset is created. However, during the labeling phase,
we didn’t include any information about the bounding boxes in the frame. Indeed,
we developed a different script to create these additional labels. Typically, these
bounding boxes are not needed by pose regression algorithms, but only by the object
detection algorithms, therefore we decided to split the labels into two groups:

• Poses labels (the .npy files generated during the frame rendering).

• Boxes labels.

One of the main goals of this synthetic video generation part was not only to provide
a solution for creating the needed dataset for our purposes, but also to offer a tool
for other developers. Therefore, even if the approach described in the next sections
relies on 2D bounding boxes to detect the object, we decided to also generate 3D
bounding box labels as all the needed information to compute them were already
available.

2D Bounding Boxes Generation

To understand the steps described below, we must introduce the concept of an
object mesh. A 3D model of an object, also known as a mesh, can be seen as a
set of (typically millions) 3D points describing the shape of that model. The more
complex the mesh, the higher the number of points needed to describe it. Consider
a 2D world: when representing a square, we need only 4 points as it is a very simple
shape. On the other hand, if we want to draw a circle, using only 10 points will
make it appear edgy; the more points we add, the smoother the circle will appear.
The same concept can be extended into the 3D world.

The high-level idea behind the 2D box generation is simple. Given the mesh of
an object, its 4x4 6DoF matrix, and the 4x4 6DoF matrix of the camera, we can
first apply the pose of the object to the mesh, hence obtaining the list of 3D points
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Figure 5.4. 3D object projection on a 2D plane with respect to the camera view.

composing the object and their position in the frame. Then, using Equation 5.1, we
can obtain the position of these 3D points with respect to the camera; now, they can
be projected onto the 2D plane. By projecting them, we obtain the 2D position of
those points in the frame. The last step to obtain the bounding box of that object
is trivial: using a simple min-max function, we get the up-left most and down-right
most corners of the box. The other two corners can be easily computed using these
two known corners.

This process is repeated for each object in each frame of the sequence, saving
the known corners in a .txt file (one for each frame).

Algorithm 1 2D Box Generation
Require: Object mesh M , object pose matrix Pobject, camera pose matrix Pcamera
Ensure: Bounding box coordinates B

Apply object pose to mesh: M ′ ← Pobject ×M
Convert 3D points to camera frame: M ′′ ← P −1

camera ×M ′

Project 3D points onto 2D plane: P ← project(M ′′)
Compute bounding box coordinates: B ← compute_bounding_box(P )
return 2D bbox vertices B

Algorithm 2 Compute 2D Bounding Box
function compute_2d_bounding_box(P )

xmin ← min(Px) ▷ Minimum x-coordinate
xmax ← max(Px) ▷ Maximum x-coordinate
ymin ← min(Py) ▷ Minimum y-coordinate
ymax ← max(Py) ▷ Maximum y-coordinate
return Bounding box coordinates: (xmin, ymin), (xmax, ymax)

end function
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3D Bounding Boxes Generation

The 3D box generation is mostly similar to the process described for the 2D box
generation. Again, starting from the object mesh and its 6DoF pose, we can compute
the mesh points’ 3D positions. However, before projecting them onto the camera
plane, we have first to compute the 8 vertices of the 3D bounding box; otherwise,
the 2D projection will result in losing some information needed to compute the 3D
vertices. We can consider the 3D bounding box as two 2D boxes with the corners
joined. Therefore, similarly to what we did in Algorithm 2 for computing the 2D
boxes, we can calculate the following points describing the first of the two boxes
composing the 3D final box:

• xmin, ymin, zmin

• xmin, ymax, zmin

• xmax, ymin, zmin

• xmax, ymax, zmin

The second box is quite trivial:

• xmin, ymin, zmax

• xmin, ymax, zmax

• xmax, ymin, zmax

• xmax, ymax, zmax

These 8 points represent the 8 vertices describing the 3D bounding box of an object.
Additionally, we also provide the projected 3D bounding box, simply obtained by
using Equation 5.1 to convert the points’ coordinates into the camera perspective
and projecting them onto the 2D plane.

Algorithm 3 3D Box Generation
Require: Object mesh M , object pose matrix Pobject, camera pose matrix Pcamera
Ensure: 3D bounding box coordinates B

Apply object pose to mesh: M ′ ← Pobject ×M
Get 3D bounding box vertices: V ← get_3d_bbox_vertices(M ′)
Convert 3D points to camera frame: V ′ ← P −1

camera × V
Project 3D bbox vertices onto 2D camera plane: V ′′ ← project(V ′)
return 3D bbox vertices V , projected 3D bbox vertices V ′′

5.2.3 YCB-Video BOP Format Conversion

In Section 5.2.1, we stated that during the labeling phase we adopted the original
YCB-Video labeling format for producing our custom labels. This synthetic video
generation part has been developed in parallel with the pose detection algorithm.
The first approach we used required a YCB-like dataset, while the second approach
(Section 5.3) used the BOP format. To be more flexible, we developed a script to
convert the standard YCB-Video format into the BOP-compliant one, offering other
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Algorithm 4 Compute 3D Bounding Box
function compute_3d_bounding_box(P )

xmin ← min(Px) ▷ Minimum x-coordinate
xmax ← max(Px) ▷ Maximum x-coordinate
ymin ← min(Py) ▷ Minimum y-coordinate
ymax ← max(Py) ▷ Maximum y-coordinate
zmin ← min(Pz) ▷ Minimum z-coordinate
zmax ← max(Pz) ▷ Maximum z-coordinate
return {

(xmin, ymin, zmin),
(xmin, ymax, zmin),
(xmax, ymin, zmin),
(xmax, ymax, zmin),
(xmin, ymin, zmax),
(xmin, ymax, zmax),
(xmax, ymin, zmax),
(xmax, ymax, zmax)

}
end function

(a) Frame of a sequence with drawn poses
and 2D bounding boxes of the objects
in the scene.

(b) Frame of a sequence with drawn 3D
bounding boxes of the objects in the
scene.

Figure 5.5
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researchers the possibility to choose between the two provided formats. The BOP
format requires the following structure:

Dataset/
train/

0000/
depth/

0000001.png
0000002.png
...
xxxxxxx.png

rgb/
0000001.png
0000002.png
...
xxxxxxx.png

mask/
0000001.png
0000002.png
...
xxxxxxx.png

scene_camera.json
scene_gt_info.json
scene_gt.json

0001/
0002/
...
zzz0/

test/
zzz1/

depth/
rgb/
mask/
scene_camera.json
scene_gt_info.json
scene_gt.json

zzz2/
...
yyyy/

As we can see, files are split into training and testing sets (respectively in train/
and test/ folders), each of which contains folders representing the video sequences.
In each sequence folder, we can find:

• depth/ : Folder containing all the depth maps of the sequence.

• rgb/ : Folder containing all the RGB frames of the sequence.

• mask/ : Folder containing all the semantic segmentation maps of the sequence.
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• scene_camera.json: JSON file containing all the information of the camera
position and intrinsic across the whole sequence.

• scene_gt_info.json: JSON file containing all the information of each object’s
bounding box of each object in each sequence.

• scene_pose.json: JSON file containing all the information of each object’s pose
of each object in each sequence.

Once we converted the dataset from YCB format to the BOP compliant one, we
also added a data distortion phase. In this part, we randomly modified images in
both the testing and training sets to make them more realistic. This step aims to
enhance the training of the model to prevent the pose regression model from being
unable to transfer the acquired knowledge from the synthetic data to the real one
during the inference phase. When a deep learning model is trained and tested only
using synthetic data, there is a high probability that if it is used in inference mode3

with real data, we could have very poor results, even if the metrics on the synthetic
data are up to the state-of-the-art level.

To address this issue when dealing with synthetic data, we add some "noise" to
these data to make them more "realistic". A typical strategy is to apply rotations,
image clippings, blur, and salt-pepper noise. However, while rotating and clipping
images are not useful for our dataset because the camera moves and rotates randomly,
hence there is no need to flip the images or apply similar operations, applying some
motion blur and salt-pepper filter could help our dataset become more noisy. In
particular, we added some motion blur to the image rather than using classical
blurring filters, as it is much more realistic to simulate the blur obtained by moving
a real camera (Figure 5.6).

3Inference mode refers to the operational state of a trained model where it processes new, unseen
data to make predictions or classifications.
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(a) Standard frame. (b) Salt-pepper filter.

(c) Motion blur. (d) Salt-pepper and motion blur.

Figure 5.6

5.2.4 YOLO Format Conversion

The most widely used as object detection algorithm is YOLO. This model requires
a well-known dataset structure to work, therefore we also had to format the dataset
structure to create a YOLO compliant dataset. The overall file arrangement is the
following:

Dataset/
images/

train/
0000-000001.png
0000-000002.png
...
xxx0-yyyyyy0.png

val/
xxx0-yyyyyy1.png
xxx0-yyyyyy2.png
...
zzzz-ccccccc.png

labels/
train/

0000-000001.txt
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0000-000002.txt
...
xxx0-yyyyyy0.txt

val/
xxx0-yyyyyy1.txt
xxx0-yyyyyy2.txt
...
zzzz-ccccccc.txt

Trivially, for each frame .png we have an associated .txt labeling file containing
the IDs of the models in the frame and the relative bounding boxes. However,
in YOLO the bounding boxes are not represented as in YCB or BOP formats
(hence using two opposite corners of the bounding box) but through the notation:
(cx, cy, w, h), where:

• (cx, cy): Center coordinates of the bounding box.

• h: Height of the bounding box.

• w: Width of the bounding box.

5.3 PoET Implementation
For the paper implementation we started from the public PoET’s GitHub reposi-

tory: https://github.com/aau-cns/poet. The repository uses Docker4 to run the
project, without needs of setting up external libraries or dependencies. In particular,
the docker image settings are:

• Ubuntu 20.04

• CUDA 11.4

• Python 3.8.8

• PyTorch 1.9

• Standard packages: NumPy, SciPy, cv2, Cython

• Non-standard packages: mish-cuda, deformable_attention (for the Deformable
DETR code).

5.3.1 Scaled-YOLOv4 Implementation
In the PoET GitHub repository, Mask-RCNN and Faster-RCNN backbones are

provided by default, while the Scaled-YOLOv4 version is not included. However, the
authors provide an additional link to retrieve the Scaled-YOLOv4 implementation:
https://github.com/aau-cns/yolov4. Initially, our work involved integrating the
backbone code into the PoET repository.

The backbone cannot be trained with the PoET transformer itself; it must be
trained separately. For the training step, we had two choices:

4Docker is a platform that enables developers to build, package, distribute, and run applications
in containers. These containers encapsulate all the dependencies required for an application,
including libraries, runtime environments, and system tools, ensuring consistency and portability
across different computing environments.

https://github.com/aau-cns/poet
https://github.com/aau-cns/yolov4
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• Train the model from scratch: Training a model without starting from a
pre-trained model can often be very time and resource-intensive. However, it
also has many advantages, as not all pre-trained models can be easily adapted
to work with a different dataset.

• Train the model using transfer-learning techniques: This technique involves
reusing or adapting a model trained on one task as the starting point for a
related task. Instead of starting the learning process from scratch, transfer
learning leverages knowledge gained from solving one problem to solve a
different but related problem more efficiently. Starting with a pre-trained
model can save a lot of time, as we only need to fine-tune a subset of the
model’s layers for the new dataset. However, we need to adjust the model
configurations when dealing with a different dataset than the one the model
was initially trained on. This technique can also drastically reduce the number
of data instances required to perform a good training step.

In this specific context, we decided to perform transfer learning, since the training-
from-scratch technique would have taken more time than the chosen method and
required too many video sequences, also probably leading to worse performance.

To perform transfer-learning, we mainly needed two files:

• Model configuration file (.cfg file)

• Model weights (.pt file)

Unfortunately, these files were not publicly available, so we contacted the repository’s
owner, who provided us with the necessary files.

Scaled-YOLOv4 Configuration File

The model configuration file contains specifications about all the layers that com-
pose the model (Figure 5.7). The layers are specified with the syntax "[layer_name]".
We can directly modify values in the file to adjust an existing model to our new
needs. The general rule when dealing with transfer learning (always considering a
configuration file generated for a different dataset) and YOLO configuration file, is
to modify two attributes:

• "classes": In the .cfg file we will find more than one layer named "[yolo]", in
each of those we have to modify such attribute indicating the number of classes
we have to predict.

• "filters": Each "[yolo]" layer is preceded by a "[convolutional]" layer. In this
layer, we have to modify the filters attribute with the value x that satisfies
the following equation:

x = (num_classes + 5) ∗ 3 (5.2)

Scaled-YOLOv4 Freezing

The model weights represent the parameters learned during the training process.
Trivially, the parameters that are valid for a certain dataset, with a high probability,
will not be valid for a different dataset. However, we can gain advantages from
those with the transfer learning technique. Each model layer has a set of parameters
used for producing a certain output that will be processed by the subsequent layer.
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Figure 5.7. Example of two layers in the Scaled-YOLOv4 configuration file.

Typically, the first layers in an architecture are not specialized in the final task
(in this case, object classification and detection), but they are used to capturing
high-level features such as patterns, corners, edges, and simple shapes. Indeed, two
models (with the same architecture) trained for the same task on different datasets
could likely have similar parameters in the higher layers. In such a case, we can
apply the freezing-layers technique; this method involves "freezing" a certain amount
of layers. Namely, during the training backward pass, the gradients associated with
these layers will not be updated. This ensures that only the last layers are trained
with the new dataset, hence reducing the overall training time needed to learn new
parameters.

In PyTorch, there are no functions that directly freeze a certain amount of layers
in the model, hence we introduced the code to freeze a given percentage of layers as
shown in Figure 5.8.

YOLO Bash Training Script

We also addressed the lack of usability in the provided code. The Python code
was difficult to use and read, which led to a significant waste of time when trying
to find or modify training parameters. To improve this, we removed all hard-coded
variables and moved them into a YAML file used to specify all model parameters
(e.g., number of classes, layers, etc.). This change allowed us to create a bash script
that performs all the preliminary checks before launching the training with the
parameters specified in the YAML file (Figure 5.9).
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Figure 5.8. This code demonstrates how we implemented the freezing step before starting
training in YOLO. As shown, given a percentage, the loop disables gradient tracking for
the specified layers to prevent their update during training. This speeds up the training
process by reducing the number of parameters tracked during backpropagation, albeit
at the cost of some overall precision.

Figure 5.9. YOLO bash training script. Note that we developed the script to be easily
used without the need to run all commands manually. This is part of the usability
refactoring that we applied to the existing project.
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5.3.2 PoET Transformer Implementation
During the initialization of the transformer, certain necessary parameters must

be specified, including:

• Backbone instance

• Deformable Transformer

• Number of encoding layers

• Number of decoding layers

• Number of classes

• Rotation representation

• Bounding box mode

• Max number of queries

As specified in Section 4.4, PoET consists of two main building blocks: the
backbone and the basic transformer. In this context, the backbone is the Scaled-
YOLOv4 implementation. As mentioned in preceding sections, the backbone cannot
be trained simultaneously with the PoET transformer. Therefore, an already trained
and fine-tuned backbone instance must be provided during the transformer’s training.
However, the model can also be trained using ground-truth data by specifying it
through the parameter "bounding box mode". The advantages and disadvantages of
training the model in ground-truth mode versus prediction mode will be discussed
in Chapter 6.

In the dedicated section, it was mentioned that the PoET transformer’s main
building block is the Deformable DETR. Thus, when instantiating the model, a
Deformable DETR instance must be created first. However, Deformable DETR
is not provided within the canonical PyTorch library. Instead, it is installed
from the original Deformable DETR GitHub repository: https://github.com/
fundamentalvision/Deformable-DETR.

The number of encoding and decoding layers specified in the PoET input repre-
sents the encoding and decoding layers in the Deformable DETR instance. Higher
values for these parameters result in a more complex transformer.

Lastly, the number of queries represents the maximum number of target-object
instances that can be found in a single frame.

In the original code, there was the possibility to start the training either from
scratch or by using a pre-trained model as a basis. Therefore, we first decided to
adopt a similar solution to the one proposed in Chapter 5.3.1. For Scaled-YOLOv4,
we froze the first layers to focus all the training efforts on the last layers. Nevertheless,
the PoET transformer is more complicated than the YOLO architecture, as it is
composed of encoding layers, decoding layers, and two MLPs (translation and
rotation heads). Therefore, it is much more challenging to understand which layers
should be frozen and how. Moreover, in the PoET checkpoint, there are also the
optimizer and learning rate scheduler statuses saved. For all these reasons, we
decided to train from scratch the entire PoET transformer.

https://github.com/fundamentalvision/Deformable-DETR
https://github.com/fundamentalvision/Deformable-DETR
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Backbone Empty Predictions Problem Fix

During the preliminary tests, we noticed that the transformer was continuously
crashing during training. Upon further investigation, we determined that the model
always expected at least one prediction from the backbone. While this was not
an issue from the authors’ perspective, in our use case, we cannot guarantee that
an object is always present in the scene. To address this, the authors introduced
a pre-processing step that removes all images without objects from the dataset.
However, this pre-processing step was still insufficient to prevent the transformer
from crashing due to missing predictions. Indeed, when training the model with
ground-truth labels, the pre-processing step worked as intended. But when training
the model in backbone mode, the same error persisted. Even when an object was
present in the frame, the transformer would crash if the backbone failed to detect it.

Since we wanted to train the model on empty frames, and the solution proposed
by the authors was not working properly, we removed the pre-processing step to
ensure that images without objects were included. To resolve the missing predictions
error, we modified the existing code so that the transformer first checks for any
predictions. For each missing object query (i.e., PoET always expects a fixed number
of objects in the frame, known as object queries), we handle the discrepancy by
adjusting the predictions. If there are more predicted objects than object queries,
we simply remove the excess predictions. Conversely, if there are fewer predictions,
we fill the unassigned object queries by populating the tensors with a value of -1.
These dummy tensors are then pruned during the loss calculation. If no predictions
are retrieved from the backbone, we will end up with all dummy tensors, resulting in
a ±∞ value. To handle this, we introduced a memory mechanism where we save the
previous loss. Whenever a ±∞ value is encountered, we simply return the loss from
the previous step, effectively ignoring the current batch during the backpropagation
step.

Through these simple yet effective steps, we solved the problem and improved
the model’s generalization by allowing it to be trained with examples that include
empty frames.

5.4 Model Deployment
In this section, we will describe the implementation of the inference architecture

outlined in Section 4.5.

5.4.1 YOLO Inference Script
We proceeded to create a server capable of running real-time predictions using

only the backbone model. This script was not necessary for the one described in
Section 5.4.2. However, since we obtained a well-performing YOLO checkpoint some
weeks before the PoET checkpoint, and we wanted to showcase the achieved results,
we created the following script to test the model using a simple webcam.

We first developed the server. In the Scaled-YOLOv4 repository, there was
already a script capable of taking images from a webcam. Therefore, the server first
waits for an incoming connection from a client, then reads the images through the
webcam and feeds them into the model. YOLO then outputs the predictions, which
are drawn onto the original image and sent back to the client. The server runs using
the same Docker image used for PoET, as the model needs all the libraries to run
even in inference mode.
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The client is a very simple script that opens a TCP connection to the server,
waits for incoming images, and uses OpenCV5 to display them.

5.4.2 PoET Inference Script
As we did for the backbone, we also developed a script for testing the transformer

through a simple webcam (Figure 5.10). The client is again a Python client that,
through OpenCV, accesses the camera, captures the images and sends them through
a TCP socket to the server. The server takes the image and saves it to a pre-defined
path. At each iteration, the new frame overwrites the oldest one. In this way, we
can simply use a "while loop" that:

1. Loads the image from the path.

2. Feeds the image into the transformer.

3. Draws the prediction onto the image.

4. Sends the image to the client.

5. Updates the frame received from the client.

5.4.3 AR Visor Script
The two scripts described in Section 5.4.1 and Section 5.4.2 were mainly used for

intermediate showcases, where our goal was to test the model’s performance using
a simple webcam. However, the final goal of the project is to create a framework
capable of communicating with AR visors. In Section 5.4, we explained the decision
to use the Varjo XR-4 over all other available visors. The idea was to convert the
client script illustrated in Figure 5.10 into a C++ script capable of capturing Varjo
images rather than simple webcam frames.

Once downloaded the official Varjo SDK and all the needed components, we
compiled the example project provided by Varjo Inc. using Windows. By taking
inspiration from a script available in the original SDK, we created the first script
able to access the raw-cameras (Figure 5.11). A simple TCP-connection was then
used to send each frame to the server.

5OpenCV is an open-source computer vision and machine learning software library.
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Figure 5.10. Client’s code used to access the webcam to retrieve real-time images and
then display them once the server has sent back the image with the drawn predictions.
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(a)

Figure 5.11

(b)

Figure 5.11
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(c)

Figure 5.11. The code shown in figure (a) is used to retrieve and update the current frame
data. In figure (b) the frame data are then converted into an RGB image. Lastly, the
code shown in figure (c) is used to instantiate a socket (called at system startup) and
send the frame through the TCP conneciton.
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Chapter 6

Test and Results

In this chapter, we will discuss the different configurations we used to perform
the experiments. We will also present the obtained results, highlighting the pros
and cons of each configuration.

6.1 Experiments’ Configuration
The Table 6.1 and Table 6.2 represent each experiments’ configuration.
The following terms will be used in the expermient tables:

• Only Dummies: The dataset consists only of objects whose pose needs to be
regressed, leading to reduced occlusion in the scene.

• Mixed: The dataset consists of objects whose pose needs to be regressed
and additional objects that are not part of the industrial object set. This
introduces more occlusion in the dataset, thus training and testing the model
in a more challenging environment.

• Enhanced & Mixed: A mixed dataset with further improvements to the
synthetic data generation script to make the images appear more realistic.

• Texturized-Enhanced & Mixed: An "Enhanced & Mixed" dataset where
objects are provided with textures instead of just a single gray paint.

• NaN: Indicates that the associated model was not trained. Namely, when
NaN is appears in the YOLO column, then we trained PoET in "ground-truth
mode". On the other hand, when we specify NaN in the PoET column, we
simply trained YOLO without considering PoET.

Ground-truth training and bounding box training Training PoET using
ground-truth rather than YOLO predictions has many pros and cons. The ground-
truth label guarantees that there are no false detections; therefore, if an object is
part of a frame, then its pose will be regressed. On the other hand, we cannot
manage occluded objects. Indeed, if an object is inside the frame but completely
occluded, the area described by its associated bounding box will represent the object
which occlude and not the object associated with the label. This can obviously
degrade the transformer’s performance. Some datasets, such as YCB-Video used by
PoET, have a parameter associated with each bounding box: bbox_visible. This
represents the percentage of the non-occluded object (e.g., if bbox_visible = 0.4,
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Test Dataset
Configuration

YOLO
Hyperparameters

PoET
Hyperparameters

I Mixed NaN

Batch size: 8
Encoding layers: 5
Decoding layers: 5
Heads: 16
Epochs: 100

II Mixed NaN

Batch size: 16
Encoding layers: 4
Decoding layers: 4
Heads: 8
Epochs: 30

III Only Dummies NaN

Batch size: 8
Encoding layers: 4
Decoding layers: 4
Heads: 8
Epochs: 20

IV Only Dummies
(double size)

NaN

Batch size: 8
Encoding layers: 4
Decoding layers: 4
Heads: 8
Epochs: 20

V Mixed
Batch size: 16
Learning rate: 0.01
Decay: 0.0005
3-Step Freezing

NaN

VI Enhanced & Mixed NaN

Batch size: 8
Encoding layers: 5
Decoding layers: 5
Heads: 16
Epochs: 100

VII Mixed
Batch size: 32
Learning rate: 0.01
Decay: 0.0005
Freezing: 30%

NaN

VIII Texturized-Enhanced
& Mixed

NaN

Batch size: 8
Encoding layers: 5
Decoding layers: 5
Heads: 16
Epochs: 100

Table 6.1. Configuration of Dataset, YOLO, and PoET Hyperparameters in different
experiments.
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Test Dataset
Configuration

YOLO
Hyperparameters

PoET
Hyperparameters

IX Texturized-Enhanced
& Mixed

Batch size: 32
Learning rate: 0.01
Decay: 0.0005
Freezing: 15%

NaN

X Texturized-Enhanced
& Mixed

Batch size: 32
Learning rate: 0.01
Decay: 0.0005
Freezing: 15%

Batch size: 8
Encoding layers: 5
Decoding layers: 5
Heads: 16
Epochs: 170

XI Realistic-Texturized-
Enhanced & Mixed

NaN

Batch size: 8
Encoding layers: 5
Decoding layers: 5
Heads: 16
Epochs: 170

XII Realistic-Texturized-
Enhanced & Mixed

Batch size: 32
Learning rate: 0.01
Decay: 0.0005
Freezing: 15%

NaN

XIII Realistic-Texturized-
Enhanced & Mixed

Batch size: 32
Learning rate: 0.01
Decay: 0.0005
Freezing: 15%

Batch size: 8
Encoding layers: 5
Decoding layers: 5
Heads: 16
Epochs: 130

XIV Experiment XIII
Fine-tuning

Batch size: 32
Learning rate: 0.01
Decay: 0.0005
Freezing: 15%

Batch size: 16
Encoding layers: 4
Decoding layers: 4
Heads: 16
Epochs: 150

Table 6.2. Configuration of Dataset, YOLO, and PoET Hyperparameters in different
experiments.
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then 60% of the pixels of the object are occluded). This value is used to eventually
discard occluded objects within the frame. However, when dealing with synthetic
datasets, retrieving such values can be very hard or even impossible. Therefore, we
decided to set it to the percentage of the bounding box in the frame. Namely, if
the pixels inside the bounding box area are 40% inside the frame and 60% outside
the frame, then bbox_visible = 0.4. This obviously implies that we are assuming
that if the object is in the frame, then it is not occluded. To balance this issue, we
decided to train PoET also using the YOLO instance. This can partially solve the
problem because if the object is occluded (or occluded within a fixed threshold),
then the model will not detect it, and therefore the transformer will not learn any
additional noise. Nevertheless, we still have to take into account the false positives
that can be introduced by the YOLO model. To have a wider view of which model
performs better, we will conduct the same experiments using PoET trained on
ground-truth data and also with PoET trained using YOLO. Trivially, this implies
that the experiments involving a YOLO instance will include an analysis dedicated
to the detection results.

6.2 Experiments Analysis
In this section, we will discuss the results obtained with the experiment configu-

rations listed in the previous section.

6.2.1 PoET Metrics
To expose the transformer results, we will use the following metrics:

• ADD-S (Average Distance of Model Points for Symmetrical Objects): It is a
metric used to evaluate the accuracy of the estimated 6D pose of symmetrical
objects. This metric accounts for the fact that, symmetrical objects can have
multiple indistinguishable poses due to their symmetry. ADD-S of an object
is defined as the average distance between each point on the 3D model using
the ground truth pose and the closest point on the model using the estimated
pose. Mathematically, it is given by:

symmetricDistance(obj, R, t, R̂, t̂) = 1
m

∑
x1∈M

min
x2∈M

∥(Rx1 + t)− (R̂x2 + t̂)∥

(6.1)
Where:

– M is the set of 3D model points.
– m is the number of points in the model.
– R and t are the ground truth rotation and translation matrices.
– R̂ and t̂ are the estimated rotation and translation matrices.
– x1 and x2 are points in the 3D model.

The pose is considered as correct if the symmetric distance is within a certain
threshold, mathematically:

correctPose(obj, R, t, R̂, t̂) = symmetricDistance(obj, R, t, R̂, t̂) ≤ threshold ∗ d
(6.2)
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Where d is the object diameter. In our case-study, the ADD-S of each object
is reported as a real number in [0, 100], given by:

ADD-Sobj =
∑

(obj,R,t,R̂,t̂)∈P oses correctPose(obj, R, t, R̂, t̂)
number of poses ∗ 100 (6.3)

Trivially, in the tables presented in the following sections, the closer the ADD-
S metric is to 100, the better the model’s performance. An ADD-S of 100
(implicitly meaning 100%) indicates that all the poses are considered correct,
as given by Equation 6.3.

• ADD (Average Distance of Model Points): It is a metric used to evaluate the
accuracy of the estimated 6D pose of non-symmetrical objects. ADD is defined
as the average distance between corresponding points on the 3D model using
the ground truth and the estimated pose. Mathematically, it is given by:

distance(obj, R, t, R̂, t̂) = 1
m

∑
x∈M

∥(Rx + t)− (R̂x + t̂)∥ (6.4)

Where:

– M is the set of 3D model points.
– m is the number of points in the model.
– R and t are the ground truth rotation and translation matrices.
– R̂ and t̂ are the estimated rotation and translation matrices.
– x is a point in the 3D model.

The pose is considered as correct if the distance is within a certain threshold,
mathematically:

correctPose(obj, R, t, R̂, t̂) = distance(obj, R, t, R̂, t̂) ≤ threshold ∗ d (6.5)

Where d is the object diameter. In our case-study, the ADD of each object is
reported as a real number in [0, 100], given by:

ADDobj =
∑

(obj,R,t,R̂,t̂)∈P oses correctPose(obj, R, t, R̂, t̂)
number of poses ∗ 100 (6.6)

Like we stated for the ADD-S, having an ADD metric close to 100 (implicitly
meaning 100%), indicates that all the poses are considered correct, as given by
Equation 6.6.

• ARE (Average Rotation Error in degrees). Since it indicates an average, the
optimal value is 0°. We must consider that this error is relative to all the
axes. For example, if we achieve an ARE of 3°, it means that the average error
in each rotation is 3°. However, in a 3D space, this rotation error could be
distributed across the x-axis, y-axis, or z-axis. Typically, this error is equally
distributed among the three axes.

• ATE (Average Translation Error in cm). Since it indicates an average, the
optimal value is 0 cm. Exactly like ARE, the ATE is relative to all the axes,
and we can assume that it is equally distributed among them.
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In the following experiments, some of our objects are symmetrical, while some others
are not. Therefore, for the symmetrical ones, we will use ADD-S as the metric,
and for the non-symmetrical ones, we will use ADD. The ADD(-S) reported in the
results tables indicates exactly this. We used three different thresholds to calculate
the ADD(-S): 10%, 5%, and 2%. The ADD(-S) reported in the tables represents
the weighted mean of these three thresholds, where the weight of each threshold is
inversely proportional to the threshold value.

Note that all these metrics strongly depend on the distance from which the
camera captures the frame. Specifically, having an ATE of 2 cm in a photo taken
from 10 meters is different from having the same ATE in a photo taken from 1
meter. All the frames that compose the dataset have been generated using a distance
d ∈ [20 cm, 60 cm].

6.2.2 YOLO Metrics
Concerning the YOLO results, we will use the following metrics:

• Precision: Precision is the ratio of true positive detections to the total number
of positive predictions. It measures the accuracy of the positive predictions
made by the model. Mathematically, it is defined as:

Precision = True Positives
True Positives + False Positives (6.7)

The precision in this case is given as a real number in [0, 1], where 0 indicates
that the model has not detected any true positives, while 1 indicates that the
model predicted only true positives and no false positives. In the tables, we
expect to observe a precision as close to 1 as possible, but not exactly 1, as
this could indicate that the model is overfitting.

• Recall: Recall is the ratio of true positive detections to the total number of
actual positive instances. It measures the ability of the model to identify all
relevant instances. Mathematically, it is defined as:

Recall = True Positives
True Positives + False Negatives (6.8)

The recall in this case is given as a real number in [0, 1], where 0 indicates
that the model has not detected any true positives, while 1 indicates that the
model predicted only true positives and no false negatives. In the tables, we
expect to observe a recall as close to 1 as possible, but not exactly 1, as this
could indicate that the model is overfitting.

• mAP@50: Mean Average Precision at IoU threshold 0.5 (mAP@50) is the mean
of the average precision values for all classes, where a prediction is considered
correct if the Intersection over Union (IoU) with the ground truth is at least
0.5. It provides a single metric to evaluate the performance of the object
detector. The value is represented as a real number in [0, 1], where 0 means
that the predicted bounding boxes do not overlap at all with the ground-truth
bounding boxes, and 1 means that they exactly coincide. In the tables, we
expect to observe an mAP@50 as close to 1 as possible, but not exactly 1, as
this could indicate that the model is overfitting.
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• mAP@95: Mean Average Precision at IoU thresholds from 0.5 to 0.95 (mAP@95)
is the mean of the average precision values for all classes, averaged over multiple
IoU thresholds ranging from 0.5 to 0.95 in increments of 0.05. This metric
provides a more comprehensive evaluation of the detector’s performance across
different levels of localization precision. Mathematically, it is defined as:

mAP@95 = 1
N

N∑
i=1

APi (6.9)

where N is the number of IoU thresholds (10 in this case: 0.5, 0.55, 0.6, ...,
0.95), and APi is the average precision at the i-th IoU threshold.
Example: Suppose we have an object detection model evaluated on a dataset
with IoU thresholds ranging from 0.5 to 0.95. For each IoU threshold, we
calculate the AP for each class. For instance, if we have two classes and the
following AP values at each threshold:

IoU Threshold AP for Class 1 AP for Class 2
0.5 0.85 0.80
0.55 0.83 0.78
... ... ...

0.95 0.60 0.55
Table 6.3. Example AP values at different IoU thresholds for two classes.

The mAP for each class would be the mean of the AP values across all
thresholds. The final mAP@95 is the mean of these class-wise mAP values.
The value is represented as a real number in [0, 1], where 0 means that the
predicted bounding boxes do not overlap at all with the ground-truth bounding
boxes, and 1 means that they exactly coincide. In the tables, we expect to
observe an mAP@95 as close to 1 as possible, but not exactly 1, as this could
indicate that the model is overfitting.

• Objectness Loss: Objectness Loss measures the error in predicting whether a
bounding box contains an object or not. It is a component of the YOLO loss
function that ensures the model correctly identifies boxes containing objects.
We expect Objectness Loss to decrease over time as the model improves its
ability to distinguish between boxes containing objects and those that do not.

• GIoU Loss: Generalized Intersection over Union (GIoU) Loss measures the
difference between the predicted and ground truth bounding boxes. It is an
improved version of IoU loss that also takes into account the distance between
the predicted and ground truth boxes, providing a better gradient for training.
We expect GIoU Loss to decrease as the model becomes better at aligning
the predicted bounding boxes with the ground truth, reflecting more accurate
bounding box predictions.

• Classification Loss: Classification Loss measures the error in predicting the
correct class label for each bounding box. It is a component of the YOLO
loss function that ensures the model correctly classifies the detected objects.
We expect Classification Loss to decrease as the model learns to accurately
classify the objects, with lower values indicating better performance.
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6.2.3 Experiment I and II (PoET Training)
These two experiments are grouped because both their configurations and results

are very similar, so it makes sens to discuss them together. These configurations are
the most basic ones, with a mixed dataset, thus containing both dummies and other
objects used to make some noise, and ground-truth data. Since the mixed dataset
is very similar to the one used in the original paper [47], in terms of number of
instances, we decided to use the same hyperparameters. In the second experiment we
slightly changed the batch size to check if this could enhance or not the transformer
performance. However, both of these two experiments achieved very bad results on
test set (Table 6.4). After further analysis, we found out that the model was highly
overfitting on training set. To determine that the transformer was overfitting, we
set both training and testing set with the same dataset and the results were nearly
perfect. So these configurations were discarded due to this problem.

Object Name ADD(-S) 2% T 5% T 10% T ARE ATE
DUMMY#1-1 6.27 5.40 8.20 12.50 132.32 5.75
DUMMY#1-2 2.89 2.10 3.20 5.00 127.88 10.73
DUMMY#5-2 21.79 16.00 22.50 32.50 131.09 7.97
DUMMY#5-3 47.57 38.00 50.00 65.00 123.69 4.96
DUMMY#6-1 0.94 0.80 1.20 2.00 97.10 46.24
DUMMY#6-2 14.76 11.00 15.00 22.00 119.14 6.15
DUMMY#1-3 4.27 3.50 5.00 7.50 125.99 10.08
DUMMY#2-1 2.22 1.80 2.50 4.00 120.11 15.45
DUMMY#2-2 2.59 2.00 3.00 4.50 121.25 12.16
DUMMY#3-1 2.67 2.20 3.10 4.60 119.78 11.87
DUMMY#3-2 4.06 3.50 4.80 6.00 121.46 6.81
DUMMY#4-1 8.53 7.00 9.00 12.00 129.83 9.14
DUMMY#4-2 17.00 14.00 18.00 24.00 124.23 12.42
DUMMY#5-1 3.78 3.00 4.00 6.00 122.24 10.34

Average 9.95 7.42 10.15 14.32 123.86 10.01
Table 6.4. This table shows the ADD(-S), thresholds at 2%, 5%, and 10%, ARE and ATE

obtained from the experiment I on the testing set. The results for the experiment II are
very similar so they will not be reported.

6.2.4 Experiment III (PoET Training)
To address the problems encountered in the first two experiments, the new

configuration was set such that the transformer would be facilitated during the
training. In particular, we generated a new dataset in which each sequence was
composed of only two dummies. The idea was to avoid as much as possible the
problem derived from the object occlusion described in Section 6.1. Nevertheless,
even using this simplified dataset and by reducing the number of epochs, we noticed
that the model was still overfitting. In particular, to check the behavior during
the training, we run the evaluation step after each training epoch. After only 5
epochs (during which the model was still not overfitting but also unable to predict
something with a reasonable precision), the transformer started to overfit again.
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6.2.5 Experiment IV (PoET Training)
The fourth experiment was mainly focused on the dataset size. One of the

problems that can lead the model to overfit is not only the quality of the data, but
also the number of instances used during the training. Therefore, we doubled the
size of the dataset containing only dummies. Again, the achieved results were almost
identical to the previous experiment.

6.2.6 Experiment V (YOLO Training)
Since all the previous 4 experiments could be considered failures, we tried a

totally different approach. First, we decided to use the mixed dataset (like what
we did in the first two experiments); nevertheless, we did not train PoET in this
experiment but focused on obtaining a well-trained YOLO model. Our idea was to
use this checkpoint to train the PoET transformer in "backbone mode" rather than
"ground-truth mode" as we did during the first 4 experiments. This experiment can
be split into three steps:

1. By sending an email to the PoET paper’s author, we obtained the original
YOLO pre-trained model. In particular, that model was trained on ImageNet
and YCB-Video datasets. Therefore, we froze the first 70% of the layers
(Section 5.3.1) and trained YOLO only on 30 sequences. The goal was to
perform a quick training, aiming to learn the high-level pattern of objects in
the custom dataset (the higher the number of frozen layers, the fewer the layers
to be trained, and therefore, the less time needed to complete an epoch). The
training ran for 57 epochs, considering that the model training resumed from
epoch 13, as the checkpoint we were provided with had stopped at the 12th
epoch. We can notice in Figure 6.1 that each graph presents a peak at epoch
13 due to the fact that from epoch 0 to epoch 12 the stored values were those
achieved during the previous training (the one which produced the checkpoint
we are starting with) and since it was not completed, these values were still
part of the graph. Moreover, as we can see from the graphs, all the values
were already converged around the 50th epoch, except the precision, which
was still not completely stalling.

2. After the first preliminary training, the goal was to repeat the process by train-
ing the previously obtained checkpoint until reaching a final step checkpoint
in which no layers were frozen. This was done to achieve step-by-step a more
finely tuned model. Obviously, to train more layers, the model needs more
instances to fine-tune not only the last layers (the 30% left non-frozen in the
previous step) but also the newly unfrozen ones. So we increased the dataset
from 30 up to 80 sequences and froze 50% of the layers. The model was trained
for 20 epochs. Unlike Figure 6.1, in Figure 6.2 we can see that there are no
peaks in the graphs since the previous training was considered complete, hence
no evaluation values were stored in the model weights. In this specific case,
we can see that not all the metrics were stalling at the 20th epoch, therefore
the model could be run for more epochs. However, this was not a problem as
we trained the model for an additional step.

3. The third step consisted of increasing the number of sequences from 80 up to
220 and freezing only 30% of the layers. We ran the training for 40 epochs.
As we can see in Figure 6.3, the values do not seem to be stalling. However,
by taking a close look at the scale on the y-axis of each graph, we can see that
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the values have improved but within a very small range. Therefore, 40 epochs
were sufficient to perform this fine-grained tuning.

At the end of these three steps, we achieved a well-trained YOLO model, as we
can see in Table 6.5. During each step, we were able to improve at least one of the
metrics used to track model performance, resulting in 88.8% precision, 95.39% recall,
96.39% mAP@50, and 78.73% mAP@95. Although training in multiple steps may
not have led to significantly better results, it allowed us to perform step-by-step
training, where we could adjust the parameters between each step. This approach
led to three micro-trainings rather than one large training session. If we had chosen
incorrect parameters for the large training, we would have had to retrain everything
from scratch. Whereas with micro-training, we could repeat only the affected step,
ultimately saving time.

Training Step Precision Recall mAP@50 mAP@95
1 0.7972 0.9268 0.9352 0.7343
2 0.8854 0.9319 0.9448 0.7573
3 0.8880 0.9539 0.9639 0.7873

Table 6.5. Performance metrics for YOLO model: Precision, Recall, mAP@50, and
mAP@95. Note that all the metrics are slowly tending to 1, this indicates that the steps
were useful to improve all the metrics. The precision is the metric mainly improved
during these steps, thus indicating both the increment of true positives and decrement
of false positives.

Training Step Classification Loss Objectness Loss GIoU Loss
1 0.01964 0.01716 0.005578
2 0.01765 0.01732 0.003069
3 0.01580 0.01534 0.001548

Table 6.6. Performance metrics for YOLO model: Classification Loss, Objectness Loss,
and GIoU Loss. Although we observe only minor improvements in the Classification
and Objectness Losses, there is a significant reduction in the GIoU Loss. This indicates
that the predicted bounding boxes are fitting the objects in the frame more accurately.
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(a)

(b)

(c)

Figure 6.1. All these graphs are relative to the first step of the YOLO training during the
experiment V. Graphs representing the precision, recall, mAP 50, and mAP 95 on the
test set in figure (a). Graphs representing the GIoU, objectness, and classification losses
on the test set in figures (b) and (c). The peaks that can be observed in each of the
three figures around epoch 13 are caused by the transfer learning technique used during
this step. From epoch 0 to epoch 12 the figures are representing the values stored in the
checkpoint, therefore from epoch 13 the values are relative to our dataset. Note that, in
figure (a) the more the lines are close to 1, the better the model is. In figure (b) and (c),
as we are treating losses, the lines tend to 0. Obviously, this trend is not perfect since is
the first step of the experiment.
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(a)

(b)

(c)

Figure 6.2. All these graphs are relative to the second step of the YOLO training during
the experiment V. Graphs representing the precision, recall, mAP 50, and mAP 95 on
the test set in figure (a). Graphs representing the GIoU, objectness, and classification
losses on the test set in figures (b) and (c). Note that the steps on the y-axe are very
small, thus indicating that the model is already close to its best performance.
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(a)

(b)

(c)

Figure 6.3. All these graphs are relative to the third step of the YOLO training during
the experiment V. Graphs representing the precision, recall, mAP 50, and mAP 95 on
the test set in figure (a). Graphs representing the GIoU, objectness, and classification
losses on the test set in figures (b) and (c). Note that the steps on the y-axe are very
small, thus indicating that the model is already close to its best performance.
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6.2.7 Experiment VI (PoET Training)
For this experiment, we decided to delve deeper into the problems encountered

during transformer training. One of our hypotheses, was that the script used to
convert the dataset from the original YCB-Video format into the BOP one, was
introducing some kind of error. After reviewing the code, we fixed it and also
enhanced the generated images to make them look more realistic. This experiment
involved generating a new dataset with 600 scenes and training PoET again using
the hyperparameters from Experiment I. Finally, we achieved almost acceptable
results, as shown in Table 6.7. However, they were far from the results shown in the
original paper [47]. As shown in Figure 6.4, the loss, once it reached epoch 80, was
no longer converging at a reasonable speed. We also tried to train the model up to
epoch 120; however, the results did not improve.

Object Name ADD(-S) 2% T 5% T 10% T ARE ATE
DUMMY#1-1 71.67 31.31 92.08 99.26 73.26 3.67
DUMMY#1-2 66.40 29.19 82.39 98.79 60.50 8.54
DUMMY#5-2 74.84 52.28 90.67 98.67 88.02 6.48
DUMMY#5-3 74.92 47.37 93.81 99.40 125.91 3.95
DUMMY#6-1 29.25 1.24 28.18 67.29 50.40 43.48
DUMMY#6-2 78.91 59.97 96.73 99.61 58.75 4.45
DUMMY#1-3 54.89 14.62 62.79 96.87 42.43 6.21
DUMMY#2-1 62.50 23.14 77.97 97.03 68.12 12.37
DUMMY#2-2 58.11 16.14 66.48 97.91 91.83 10.89
DUMMY#3-1 69.53 38.83 85.37 97.53 32.71 12.37
DUMMY#3-2 61.40 24.85 73.88 95.59 77.95 11.49
DUMMY#4-1 75.90 49.90 94.59 99.33 46.30 5.97
DUMMY#4-2 77.51 61.13 92.49 98.97 39.93 4.37
DUMMY#5-1 66.86 27.00 84.38 98.98 60.44 8.26

Average 65.91 34.07 80.13 96.09 66.27 7.77
Table 6.7. This table shows the ADD(-S), thresholds at 2%, 5%, and 10%, ARE and ATE

obtained from the experiment VI on the testing set, along with accuracy at different
thresholds.
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Figure 6.4. Graph showing the loss trend during the training in experiment VI. The trend
is generally downward. Moreover, since the line is not clearly leveling off, this suggests
that the model could be improved by increasing the number of epochs.

6.2.8 Experiment VII (YOLO Training)
During this experiment, we trained YOLO starting from the checkpoint obtained

in Experiment 5. As the main strategy, we froze 30% of the layers, running the
process for 100 epochs. During this experiment, we also added the capability to see
the results per class.

We trained the object detector again as we modified the synthetic generator
during Experiment 6. Therefore, the appearance of the images changed significantly,
necessitating retraining. By comparing the results achieved in Table 6.8 with those
described in Table 6.5, the overall precision of the model with the semi-realistic images
decreased by 0.08, while the other metrics improved. The greatest improvement was
in the mAP@95, which increased from 0.7873 to 0.9197.

As we can note from the graphs shown in Figure 6.5, the model has correctly
learned until it reached epoch 80, then it started to show some overfitting symptoms.
However, this is not a problem as we selected the 80th epoch as the best, so we
saved that epoch’s checkpoint.
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(a)

(b)

(c)

Figure 6.5. Graphs of the experiment VII representing the precision, recall, mAP 50, and
mAP 95 on the test set in figure (a). Graphs representing the GIoU, objectness, and
classification losses on the test set in figures (b) and (c). These figures suggest that
around epoch 80, the model began to overfit. This is evident from Figure (b), where
the two test losses started to increase again around epoch 80, rather than continuing to
decrease. Combined with the similar behavior observed in Figure (a), this indicates that
the best model is likely the one obtained at epoch 80.
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Object Name Precision Recall mAP@0.5 mAP@0.5:0.95
DUMMY#1-1 0.8027 0.9907 0.9875 0.9506
DUMMY#1-2 0.7498 0.9877 0.9841 0.9439
DUMMY#5-2 0.7925 0.9690 0.9795 0.8746
DUMMY#5-3 0.8494 0.9917 0.9928 0.9170
DUMMY#6-1 0.8286 0.9758 0.9792 0.9174
DUMMY#6-2 0.9045 0.9990 0.9942 0.9775
DUMMY#1-3 0.7679 0.9804 0.9838 0.9245
DUMMY#2-1 0.7647 0.9808 0.9822 0.9267
DUMMY#2-2 0.8446 0.9917 0.9903 0.9275
DUMMY#3-1 0.8133 0.9843 0.9863 0.9148
DUMMY#3-2 0.7656 0.9597 0.9661 0.8355
DUMMY#4-1 0.8575 0.9931 0.9937 0.9529
DUMMY#4-2 0.8216 0.9861 0.9907 0.9092
DUMMY#5-1 0.7582 0.9882 0.9839 0.9453
Average 0.8038 0.9857 0.9861 0.9197

Table 6.8. YOLO performance metrics for each class and their average, achieved in
experiment VII.

6.2.9 Experiment VIII (PoET Training)
This experiment was mainly focused on understanding the main differences

between our dummies and the objects used for the original PoET implementation.
As we can see from the comparison in Figure 6.6, the original objects were all
provided with textures while ours were all colored using solid gray1. In the industrial
environment, having all the 3D-printed objects with the same tint can save both
time and money as they don’t need to be painted in specific ways. However, it is
reasonable to think that having no texture on the dummies can make it almost
impossible in some cases to understand the orientation of the object. Therefore, for
this experiment, we manually drew some markers as shown in Figure 6.6. The goal
of drawing these markers such that they can be easily distinguished was to provide
an "upper bound" to the company. With Experiment 6, we provided a "lower bound";
therefore, using more realistic and industrial markers (such as an "R" to indicate
right, "L" to indicate left, "B" for the bottom part, etc.), the achieved results must
lie between these two limits obtained in Experiment 6 and this one. Then we trained
again the model on the dataset composed with these new objects, the results are
shown in Table 6.9.

1Solid gray is the standard gray graduation used in Blender and most 3D modeling software.
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(a) (b)

Figure 6.6. In figure (a) we can see a frame taken from the original YCB-Video dataset,
while in figure (b) we can observe a synthetic frame with the solid-colored dummies.

Object Name ADD(-S) 2% T 5% T 10% T ARE ATE
DUMMY#1-1 73.00 42.40 90.35 98.80 23.20 3.68
DUMMY#1-2 68.90 43.06 81.36 97.54 25.25 5.26
DUMMY#5-2 72.24 51.67 85.28 96.82 33.26 4.86
DUMMY#5-3 80.00 65.90 95.48 99.24 30.12 3.05
DUMMY#6-1 35.50 11.03 40.27 64.19 24.33 3.26
DUMMY#6-2 82.14 72.89 96.62 99.55 21.24 3.43
DUMMY#1-3 60.89 30.86 71.06 95.37 26.33 5.08
DUMMY#2-1 63.98 36.57 76.15 93.83 23.65 6.12
DUMMY#2-2 68.22 42.24 79.92 97.08 23.02 5.19
DUMMY#3-1 66.44 37.68 79.66 96.08 24.35 6.17
DUMMY#3-2 56.76 26.55 66.44 90.32 36.26 7.31
DUMMY#4-1 76.44 54.53 93.56 99.05 22.53 4.47
DUMMY#4-2 77.28 62.70 91.18 98.41 27.58 4.16
DUMMY#5-1 71.39 46.04 85.55 98.11 21.97 4.92

Average 68.09 44.58 80.92 94.60 25.78 4.78
Table 6.9. This table shows the updated ADD(-S), thresholds at 2%, 5%, and 10%, ARE

and ATE obtained from the experiment on the testing set, along with the accuracy at
different thresholds in the experiment VIII.
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Figure 6.7. Graph showing the loss trend during the training in experiment VIII. The
peak observed around epoch 22 occurred because the training was paused and resumed
on another machine due to technical issues.

6.2.10 Experiment IX (YOLO Training)
As already seen in previous experiments, once we created a new dataset for

training the transformer in Experiment 8, we also trained YOLO on the same dataset,
using the model achieved in Experiment 7 as the starting point for the training by
also freezing 15% of the layers. The training lasted for 100 epochs, and the results
are visible in Table 6.10. As we can see from the table, we improved the average
precision by a factor of 10%, while keeping the other metrics close to perfection. The
markers added to the object in the previous experiment helped YOLO achieve better
detection. This was trivially predictable by observing how much PoET benefited
from the textures.

Object Name Precision Recall mAP@0.5 mAP@0.5:0.95
DUMMY#1-1 0.8994 0.9978 0.9919 0.9732
DUMMY#1-2 0.8992 0.9982 0.9933 0.9715
DUMMY#5-2 0.8831 0.9925 0.9935 0.9187
DUMMY#5-3 0.9014 0.9972 0.9947 0.9303
DUMMY#6-1 0.9023 0.9988 0.9933 0.9768
DUMMY#6-2 0.9383 0.9994 0.9945 0.9888
DUMMY#1-3 0.8668 0.9943 0.9924 0.9637
DUMMY#2-1 0.8830 0.9976 0.9930 0.9585
DUMMY#2-2 0.9031 0.9968 0.9937 0.9564
DUMMY#3-1 0.8748 0.9940 0.9915 0.9460
DUMMY#3-2 0.8769 0.9838 0.9891 0.8855
DUMMY#4-1 0.9190 0.9985 0.9943 0.9744
DUMMY#4-2 0.8889 0.9974 0.9946 0.9381
DUMMY#5-1 0.8988 0.9973 0.9928 0.9741
Average 0.8993 0.9965 0.9933 0.9565

Table 6.10. YOLO performance metrics for each class and their average, achieved in
experiment IX.



6.2 Experiments Analysis 79

(a)

(b)

(c)

Figure 6.8. Graphs of the experiment IX representing the precision, recall, mAP 50, and
mAP 95 on the test set in figure (a). Graphs representing the GIoU, objectness, and
classification losses on the test set in figures (b) and (c). The trends observable in these
figures are accurate: the losses tend to approach 0, while the other metrics approach 1.
Although the plots may appear unusual due to the lack of straightforward improvement,
a closer examination of the y-axis reveals the small magnitude of the changes. This
suggests that the model has reached its peak performance, and therefore, even small
fluctuations can result in significant changes in the graph.
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6.2.11 Experiment X (PoET Training with YOLO)
Once we obtained a satisfactory version of both YOLO (Experiment 9) and

PoET (Experiment 8) ground-truth models, we decided to retrain PoET in backbone
mode. In this experiment, the labels used for training the model were not the
actual ground-truth labels but rather those predicted by the YOLO backbone. The
backbone weights used were from Experiment 9.

Intuitively, the results should be worse compared to the ground-truth model
due to the additional backbone inference step, which may fail to predict objects
accurately or output incorrect classification predictions. The results are presented
in Table 6.11. The overall ARE is approximately 10 degrees worse than the ground-
truth results. We also expected this trend to be followed by the ADD(-S) metric;
however, interestingly, the distance metrics improved despite the degradation in the
rotation metrics.

Object Name ADD(-S) 2% T 5% T 10% T ARE ATE
DUMMY#1-1 78.06 51.86 96.26 99.78 28.38 2.84
DUMMY#1-2 75.76 54.29 90.74 99.52 25.67 4.70
DUMMY#5-2 79.74 65.05 93.57 99.15 38.13 4.20
DUMMY#5-3 78.73 63.67 95.57 99.37 113.12 3.44
DUMMY#6-1 31.26 9.98 35.13 57.26 35.13 2.66
DUMMY#6-2 84.40 79.40 98.35 99.88 28.30 3.12
DUMMY#1-3 69.27 42.08 81.43 98.89 21.61 4.14
DUMMY#2-1 73.29 51.25 87.89 98.06 26.54 6.14
DUMMY#2-2 76.18 56.81 88.92 99.50 29.06 4.96
DUMMY#3-1 76.75 57.51 91.45 98.83 19.44 4.92
DUMMY#3-2 66.46 37.10 78.88 95.93 47.11 7.31
DUMMY#4-1 80.52 67.00 96.41 99.66 27.32 4.25
DUMMY#4-2 80.67 70.22 94.58 99.27 29.83 3.67
DUMMY#5-1 76.92 56.48 92.38 99.44 25.89 4.55

Average 73.43 54.48 87.25 96.04 35.43 4.30
Table 6.11. This table shows the updated ADD(-S), thresholds at 2%, 5%, and 10%, ARE

and ATE obtained from the experiment on the testing set, along with the accuracy at
different thresholds in the experiment X.
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Figure 6.9. Graph showing the loss trend during the training in experiment X. Although
the line does not seem to be converging, the model has not been learning effectively. The
improvements in terms of loss are too small relative to the number of epochs required to
achieve them.

6.2.12 Experiment XI (PoET Training)
The results shown in Experiment 6 and Experiment 9 can be used as worst-best

case scenarios. However, in the industries the textures used for the best-case scenario
are not reproducible. The last version of our dataset is the one which tries to
replicate realistic textures in which each object’s face is marked with a red symbol
indicating the 3D axe direction towards the face is pointing to. Namely, the symbols
can be:

• +X

• -X

• +Y

• -Y

• +Z

• -Z

You can see some examples of the new textures in Figure 6.11.
From the results shown in Table 6.12, we expected results to lie between those

presented in Experiment 8 and those shown in Experiment 6. However, the average
ARE is about 3 degrees lower than the "optimal" results we achieved in Experiment
8. This means that more complex textures do not necessarily yield better results. By
using these simple yet efficient textures, we achieved the best results and provided a
ready-for-industrial-use model.
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Figure 6.10. Graph showing the loss trend during the training in experiment XI. The jump
observable around epoch 120 occurred because the training was paused and resumed on
another machine due to technical issues.

(a) (b)

Figure 6.11. In the two figures we can see the examples of industrial textures used in
experiment XI. Each object is clearly marked according to industrial convention. This
provides a more realistic example, as these markers can be easily replicated during the
piece creation process. The solid color used for the object is the default blender color,
however, it may be adjusted during the production.
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Object Name ADD(-S) 2% T 5% T 10% T ARE ATE
DUMMY#1-1 82.10 65.75 97.54 99.84 17.55 2.42
DUMMY#1-2 80.17 67.01 93.52 99.66 18.59 3.79
DUMMY#5-2 80.37 68.39 92.78 98.82 22.28 3.54
DUMMY#5-3 83.17 73.65 96.88 99.67 34.68 2.62
DUMMY#6-1 48.35 25.00 57.42 73.63 22.39 2.19
DUMMY#6-2 86.03 83.15 98.41 99.87 16.90 2.66
DUMMY#1-3 73.38 52.25 86.13 98.60 15.31 3.43
DUMMY#2-1 77.73 61.06 92.16 98.94 19.74 4.89
DUMMY#2-2 77.63 61.72 88.84 99.46 33.96 5.54
DUMMY#3-1 78.52 62.46 92.07 98.78 27.80 5.84
DUMMY#3-2 68.59 42.83 80.59 96.47 33.79 6.36
DUMMY#4-1 82.65 74.30 96.89 99.55 20.66 3.61
DUMMY#4-2 82.25 74.54 95.31 99.43 23.05 3.32
DUMMY#5-1 81.09 67.70 94.80 99.73 14.37 3.54

Average 77.29 62.84 90.24 97.32 22.70 3.80
Table 6.12. This table shows the updated ADD(-S), thresholds at 2%, 5%, and 10%, ARE

and ATE obtained from the experiment on the testing set, along with the accuracy at
different thresholds in the experiment XI.

6.2.13 Experiment XII (YOLO Training)
As we did with all the other datasets, we also trained the YOLO model on the

realistic-texture dataset. The checkpoint used was the one achieved in Experiment
7 with a freezing value of 15%. The results are shown in Table 6.13. Similar
to Experiment 11, where we improved the results obtained with the non-realistic
textures, we observed performance gains in each model during this training as well.

Object Name Precision Recall mAP@0.5 mAP@0.5:0.95
DUMMY#1-1 0.9106 0.9974 0.9930 0.9764
DUMMY#1-2 0.8866 0.9960 0.9931 0.9739
DUMMY#5-2 0.8977 0.9912 0.9937 0.8935
DUMMY#5-3 0.9009 0.9981 0.9948 0.9000
DUMMY#6-1 0.9193 0.9984 0.9936 0.9780
DUMMY#6-2 0.9437 0.9996 0.9945 0.9866
DUMMY#1-3 0.8910 0.9945 0.9933 0.9673
DUMMY#2-1 0.8969 0.9955 0.9931 0.9594
DUMMY#2-2 0.9134 0.9974 0.9933 0.9585
DUMMY#3-1 0.8885 0.9925 0.9918 0.9523
DUMMY#3-2 0.8700 0.9886 0.9920 0.8739
DUMMY#4-1 0.9154 0.9983 0.9946 0.9698
DUMMY#4-2 0.8944 0.9968 0.9947 0.9165
DUMMY#5-1 0.8947 0.9974 0.9927 0.9747
Average 0.9027 0.9964 0.9935 0.9491

Table 6.13. YOLO performance metrics for each class and their average, achieved in
experiment XII.
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(a)

(b)

(c)

Figure 6.12. Graphs of the experiment XII representing the precision, recall, mAP 50, and
mAP 95 on the test set in figure (a). Graphs representing the GIoU, objectness, and
classification losses on the test set in figures (b) and (c). The trends observable in these
figures are accurate: the losses tend to approach 0, while the other metrics approach 1.
Although the plots may appear unusual due to the lack of straightforward improvement,
a closer examination of the y-axis reveals the small magnitude of the changes. This
suggests that the model has reached its peak performance, and therefore, even small
fluctuations can result in significant changes in the graph.
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6.2.14 Experiment XIII (PoET Training with YOLO)
In Experiment 10, we presented the PoET model training using the backbone

predictions. However, since that experiment was conducted on a non-realistic dataset,
once we trained the YOLO backbone in Experiment 12 using industrial textures, we
also decided to train a PoET model in "backbone mode". As observed in Experiment
10, the results of this experiment are slightly worse than those achieved using the
ground-truth training mode with the same dataset (i.e. Experiment 11). The
achieved results are shown in Table 6.14.

If we compare the results of this experiment to those presented in Experiment
10, we can see that all the metrics are very close to each other. However, when
looking at the ground-truth training results with the two datasets, Experiment 11
and Experiment 8, the PoET model trained with industrial textures performed
significantly better than the one trained with non-realistic textures. Therefore, we
could expect that the results of this experiment would also be better than those
presented in Experiment 10.

If we examine the two graphs showing the losses, Figure 6.13 and Figure 6.9, we
can see that the training in Experiment 10 ran for approximately 30 more epochs
than in this experiment. This was mainly due to a lack of time. Therefore, even
though the results in Table 6.14 are very similar to those in Table 6.11, we achieved
these results in 30 fewer epochs. It is likely that if we had run this experiment for
the same number of epochs as in Experiment 10, the results would have been better.
This would also align with the trends observed in the ground-truth training results
in Experiment 11 and Experiment 8.

Object Name ADD(-S) 2% T 5% T 10% T ARE ATE
DUMMY#1-1 75.57 44.51 94.46 99.65 32.01 3.31
DUMMY#1-2 72.91 47.38 87.82 99.28 29.87 5.34
DUMMY#5-2 75.29 55.23 89.11 98.62 33.90 4.50
DUMMY#5-3 78.46 61.22 94.66 99.26 78.52 3.49
DUMMY#6-1 25.49 7.47 27.95 47.70 40.38 2.89
DUMMY#6-2 83.24 75.75 97.45 99.76 28.99 3.31
DUMMY#1-3 67.85 38.99 80.48 98.55 21.54 4.15
DUMMY#2-1 69.79 43.74 84.60 97.08 26.95 6.48
DUMMY#2-2 68.27 37.31 81.41 98.81 52.07 7.77
DUMMY#3-1 71.04 44.52 85.92 97.67 32.02 6.79
DUMMY#3-2 64.30 33.70 76.76 95.44 43.45 7.49
DUMMY#4-1 78.38 60.32 95.09 99.30 29.86 4.74
DUMMY#4-2 78.10 64.60 92.16 98.49 29.72 4.15
DUMMY#5-1 74.30 50.23 89.88 99.20 26.76 5.19

Average 70.21 47.50 84.12 94.91 35.87 4.93
Table 6.14. This table shows the updated ADD(-S), thresholds at 2%, 5%, and 10%, ARE

and ATE obtained from the experiment on the testing set, along with the accuracy at
different thresholds in the experiment XIII.
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Figure 6.13. Graph showing the loss trend during the training in experiment XIII.

6.2.15 Experiment XIV (PoET Training with YOLO Fine-Tuning)
The last experiment was mainly focused on fine-tuning the model for the use case

we are addressing. The model was trained by considering two main factors: accuracy
and inference time. Trivially, there is a trade-off between these two parameters;
the more precise the model, the higher the inference time (i.e., more time needed
for each prediction). In the AR use case, precision is important because we want
to correctly classify each object and determine the position to attach a 3D label
for description. However, if we had to assign priority to the parameters, we should
probably give more weight to inference time rather than accuracy. Thus, we adjusted
the transformer hyperparameters to speed up the process without losing too much
accuracy. Instead of using 5 encoding and decoding layers, we used 4 layers, which
also allowed us to increase the batch size during training. We did not modify the
number of heads in the transformer, as we observed that reducing this number
caused performance to decrease too quickly. We used the industrial dataset with
the associated pre-trained weights from the previous experiments. The results are
visible in Table 6.15. The results are worse than those presented in Experiment 13,
but we achieved a 10% speedup in inference time.

As mentioned, in the presented use case, inference time is a key constraint and
holds more importance than accuracy. However, after achieving these results, we
noticed that the performance degradation might be too significant. The ARE has
increased by 5 degrees. If this error were equally distributed across the three axes,
it would represent only a small increase. Nevertheless, the error distribution is not
always evenly split.

Additionally, if we closely examine the ADD(-S) and the corresponding threshold
ranges, we can see that the metrics have decreased by 5-6 percentage points. This,
along with the increased ARE, indicates that the predicted poses are significantly
worse than those achieved with the original configuration in Experiment 13. Further
tests are needed to assess whether this performance degradation is still acceptable
in the real-world use case.

This experiment also showed that reducing the number of encoding and decoding
layers, while keeping the number of heads and other hyperparameters unchanged,
makes the model significantly faster but leads to noticeable performance degradation.
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Increasing the number of heads could likely help reduce this degradation, though
this would also reduce the gain in inference time.

Object Name ADD(-S) 2% T 5% T 10% T ARE ATE
DUMMY#1-1 70.83 40.73 89.11 95.49 37.31 4.41
DUMMY#1-2 65.91 44.19 83.35 93.28 35.44 6.26
DUMMY#5-2 69.49 50.59 82.93 91.82 38.63 4.90
DUMMY#5-3 74.14 55.15 89.98 95.12 84.14 4.44
DUMMY#6-1 20.34 3.73 22.98 40.76 45.53 3.67
DUMMY#6-2 77.01 69.42 91.41 93.25 32.97 3.98
DUMMY#1-3 62.44 32.14 74.33 93.67 25.84 4.98
DUMMY#2-1 66.07 38.01 78.02 93.07 31.05 7.20
DUMMY#2-2 62.45 30.71 74.57 93.77 56.12 8.90
DUMMY#3-1 67.50 40.24 80.79 93.10 35.59 7.88
DUMMY#3-2 60.53 29.70 71.06 88.72 47.93 8.10
DUMMY#4-1 72.93 56.99 88.79 94.47 36.16 4.98
DUMMY#4-2 71.14 57.88 88.16 91.74 35.93 4.33
DUMMY#5-1 71.26 46.47 86.51 94.55 30.39 5.61

Average 65.15 42.57 78.71 89.49 40.93 5.69
Table 6.15. This table shows the updated ADD(-S), thresholds at 2%, 5%, and 10%, ARE,

and ATE for experiment XIV.
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6.2.16 Inference Experiment
Once we completed all the training, we decided to test the models in inference

mode. To carry out this part, we used the scripts described in Section 5.4.2. For
time reasons, we used a simple webcam instead of the Varjo visor; however, this did
not affect the results. Figure 6.14 shows subsequent frames taken from the inference
video. To recreate the scenario, we displayed an ad-hoc image on a monitor, an
image the model had never seen during training. We did not use real dummies
as we lacked the time and authorization to print them using a 3D printer. The
model checkpoint used was the one obtained in Experiment 10, as it was the only
model trained using the YOLO backbone (Experiment 13 and Experiment 10 were
completed one week before the thesis submission, so we had no time to perform the
inference using those checkpoints). For real-time prediction tasks, the model must
be trained with YOLO as the backbone rather than ground-truth labels. Otherwise,
the images will not be pre-processed by the backbone, and PoET will not be able to
predict the pose based on the backbone predictions.

As shown in Figure 6.14, the predictions are consistent across frames for most of
the dummies. However, the predicted rotation for the small dummy in the lower-left
corner is consistent between frames (a) and (b), but not in frames (c) and (d). The
same issue is observed with the dummy at the bottom of the frame, where the
prediction in frame (b) is entirely incorrect. This discrepancy is due to the model,
which generally performs well but is still prone to significant wrong predictions.
Overall, the model works well for most of the dummies, as reflected in the results
shown in the corresponding experiment tables.

During these tests, we observed that the predictions suffer from jittering, which
results in trembling axes in the videos. This issue is partly due to the unstable video
but is primarily caused by the model’s predictions. This issue can be mitigated by
adjusting each prediction, ensuring that the rotation does not vary beyond a certain
threshold. With this simple yet effective solution, the predicted pose will be more
stable and less prone to oscillation.
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(a) (b)

(c) (d)

Figure 6.14. These are 4 subsequent frames taken from the inference video. The video was
created through the inference scripts and a simple webcam by framing a monitor with
frames never seen during the training.
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Chapter 7

Conclusions

In the previous chapters, we discussed the problem, analyzing the solutions
attempted, and the experiments conducted to achieve the initial goal of assisting the
assembly line at every step. In other words, we focused on detecting and regressing
each object class and pose. The dataset was the first challenge we addressed to
ensure greater flexibility throughout the process. The ability to create an ad-hoc
dataset in the industrial environment is fundamental. It allows us to focus on the
model, rather than manually creating a new dataset for each purpose. In this project,
we successfully achieved and improved the results proposed in the original paper [47].
To reach our goal, we began with the pre-trained models from the original paper
and then trained and fine-tuned them on our custom dataset whenever possible.

Through the 14 experiments conducted, we tested the system using a wide range
of configurations. To summarize the results, we can conclude that Experiment
13 and Experiment 14 represent the two final configurations we would adopt for
the presented use case. While Experiment 13 can be considered the best in terms
of accuracy, Experiment 14 is the configuration that better suits the real-time
constraints imposed by the specific use case.

We demonstrated that, deep learning computer vision techniques can be applied
in the Industry 4.0 environment, to solve problems in a more flexible way. However,
there are still some limitations to consider. The computational complexity of the
models requires high-end hardware for training and, in this specific case, also for
deployment. Moreover, training models solely with synthetic data, as we did in
this project, can be useful during the training and testing phases, but for a more
finely tuned model, it would be beneficial to include some real-labeled images in the
dataset.

In conclusion, this work represents a foundational step toward developing a
flexible solution for the modern industrial environment, achieving state-of-the-art
results in the 6D pose estimation task. This advancement not only enhances the
accuracy and reliability of pose estimation, but also opens avenues for further research
and application in dynamic industrial settings.
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Chapter 8

Future Work

The project is still not entirely completed, as two minor steps remain. We
developed the client for the Varjo visor; however, the predictions retrieved from the
server (which runs the pose estimation model) are still not utilized. The next step is
to take these predictions and render them using the custom SDK provided by Varjo.
These predictions involve placing a label above each object and drawing the 3D axes
representing the pose.

The project was also developed with future growth in mind. The model we used
is a state-of-the-art model with top scores achieved in the BOP challenge datasets.
As a result, further improvements may be difficult, as we have likely reached a
plateau in model performance. However, as new models and research papers on pose
estimation are likely to emerge in the coming years, we prepared for this by splitting
the project into two macro-projects: the dataset generator and the pose estimation
model. One potential future improvement is implementing a more advanced model
when it becomes available.

One way to enhance model performance is by post-processing the predictions so
that the predicted rotations during frames are influenced by the previous frame. This
approach can help mitigate the prediction jittering problem described in Inference
Experiment. We observed that the drawn axes tend to oscillate within small ranges
and, at times, are entirely incorrect. A possible solution involves imposing constraints
on the predictions across frames, ensuring that the rotations cannot vary too much
between consecutive frames. This method would allow even initially incorrect
predictions to be adjusted toward the correct pose in subsequent frames.
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